We demonstrated a chemical process in the fabrication of a SERS fiber probe with an ultrahigh sensitivity.The synthesis was carried out by preparing Au@Ag core-shell nanorods (Au@Ag-NRs) selfassembled on polyelectroly...We demonstrated a chemical process in the fabrication of a SERS fiber probe with an ultrahigh sensitivity.The synthesis was carried out by preparing Au@Ag core-shell nanorods (Au@Ag-NRs) selfassembled on polyelectrolyte (PE) multilayers,for which Au@Ag-NRs were controlled by adjusting the silver layer thickness.The effect of silver layer thickness of Au@Ag-NRs on the SERS performance of the fiber probe was investigated.The SERS fiber probe shows the best performance when the silver layer thickness is controlled at 8.57 nm.Under the condition of optimizing silver layer thickness,the fiber probe exhibits ultra-high sensitivity (i e,10^(-10) M crystalline violet,CV),good reproducibility (i e,RSD of 3.5%) and stability.Besides,electromagnetic field distribution of the SERS fiber probe was also investigated.The strongest enhancement is found within the core of fiber,whereas a weakened electromagnetic field exists in the fiber cladding layer.The SERS fiber probe can be a good candidate in ultra-trace detection for biomedical and environmental areas.展开更多
The monodisperse Au@Ag bimetallic nanorod is encapsulated by crosslinked poly( N-isopropylacrylamide)( PNIPAM) to produce thermo-responsive composite microgel with well-defined core-shell structure( Au@ Ag NR@ PNIPAM ...The monodisperse Au@Ag bimetallic nanorod is encapsulated by crosslinked poly( N-isopropylacrylamide)( PNIPAM) to produce thermo-responsive composite microgel with well-defined core-shell structure( Au@ Ag NR@ PNIPAM microgel)by seed-precipitation polymerization method using butenoic acid modified Au @ Ag NRs as seeds. When the temperature of the aqueous medium increases from 20℃ to 50℃,the localized surface plasmon resonance( LSPR) band of the entrapped Au @ Ag NR is pronouncedly red-shifted because of the decreased spatial distances between them as a result of shrinkage of the microgels,leading to their plasmonic coupling. The temperature tunable plasmonic coupling is demonstrated by temperature dependence of the surface enhanced Raman spectroscopy( SERS) signal of 1-naphthol in aqueous solution. Different from static plasmonic coupling modes from nanostructured assembly or array system of noble metals,the proposed plasmonic coupling can be dynamically controlled by environmental temperature. Therefore, the thermo responsive hybrid microgels have potential applications in mobile LSPR or SERS microsensors for living tissues or cells.展开更多
Au@Au@Ag double shell nanoparticles were fabricated and characterized using TEM,STEM-mapping and UV-Vis methods.Using crystal violet as Raman probe,the surface-enhanced Raman scattering(SERS)activity of the as-prepare...Au@Au@Ag double shell nanoparticles were fabricated and characterized using TEM,STEM-mapping and UV-Vis methods.Using crystal violet as Raman probe,the surface-enhanced Raman scattering(SERS)activity of the as-prepared Au@Au@Ag nanoparticles was studied by comparing to Au,Au@Ag and Au@Au core-shell nanoparticles which were prepared by the same methods.Moreover,it can be found that the SERS activity was enhanced obviously by introduction of NaCl and the concentrations of NaCl played a key role in SERS detection.With an appropriate concentration of NaCl,the limit of detection as low as 10^(-10)mol/L crystal violet can be achieved.The possible enhanced mechanism was also discussed.Furthermore,with simple sample pretreatment,the detection limit of 5μg/g Rhodamine B(RhB)in chili powders can be achieved.The results highlight the potential utility of Au@Au@Ag for detection of illegal food additives with low concentrations.展开更多
基金Funded by National Natural Science Foundation of China (Nos.51372179, 51772224)the Open Projects Foundation of Yangtze Optical Fiber and Cable Joint Stock Limited Company (YOFC)(No.SKLD1705)。
文摘We demonstrated a chemical process in the fabrication of a SERS fiber probe with an ultrahigh sensitivity.The synthesis was carried out by preparing Au@Ag core-shell nanorods (Au@Ag-NRs) selfassembled on polyelectrolyte (PE) multilayers,for which Au@Ag-NRs were controlled by adjusting the silver layer thickness.The effect of silver layer thickness of Au@Ag-NRs on the SERS performance of the fiber probe was investigated.The SERS fiber probe shows the best performance when the silver layer thickness is controlled at 8.57 nm.Under the condition of optimizing silver layer thickness,the fiber probe exhibits ultra-high sensitivity (i e,10^(-10) M crystalline violet,CV),good reproducibility (i e,RSD of 3.5%) and stability.Besides,electromagnetic field distribution of the SERS fiber probe was also investigated.The strongest enhancement is found within the core of fiber,whereas a weakened electromagnetic field exists in the fiber cladding layer.The SERS fiber probe can be a good candidate in ultra-trace detection for biomedical and environmental areas.
基金National Natural Science Foundation of China(No.51373030)Chinese Universities Scientific Fund(No.CUSF-DH-D-2014023)
文摘The monodisperse Au@Ag bimetallic nanorod is encapsulated by crosslinked poly( N-isopropylacrylamide)( PNIPAM) to produce thermo-responsive composite microgel with well-defined core-shell structure( Au@ Ag NR@ PNIPAM microgel)by seed-precipitation polymerization method using butenoic acid modified Au @ Ag NRs as seeds. When the temperature of the aqueous medium increases from 20℃ to 50℃,the localized surface plasmon resonance( LSPR) band of the entrapped Au @ Ag NR is pronouncedly red-shifted because of the decreased spatial distances between them as a result of shrinkage of the microgels,leading to their plasmonic coupling. The temperature tunable plasmonic coupling is demonstrated by temperature dependence of the surface enhanced Raman spectroscopy( SERS) signal of 1-naphthol in aqueous solution. Different from static plasmonic coupling modes from nanostructured assembly or array system of noble metals,the proposed plasmonic coupling can be dynamically controlled by environmental temperature. Therefore, the thermo responsive hybrid microgels have potential applications in mobile LSPR or SERS microsensors for living tissues or cells.
基金supported by the National Natural Science Foundation of China(No.21505118)the Natural Science Foundation of Jiangsu Province of China(BK 20150438)Postdoctoral Research Funding Program of Jiangsu Province of China(No.1701133C).
文摘Au@Au@Ag double shell nanoparticles were fabricated and characterized using TEM,STEM-mapping and UV-Vis methods.Using crystal violet as Raman probe,the surface-enhanced Raman scattering(SERS)activity of the as-prepared Au@Au@Ag nanoparticles was studied by comparing to Au,Au@Ag and Au@Au core-shell nanoparticles which were prepared by the same methods.Moreover,it can be found that the SERS activity was enhanced obviously by introduction of NaCl and the concentrations of NaCl played a key role in SERS detection.With an appropriate concentration of NaCl,the limit of detection as low as 10^(-10)mol/L crystal violet can be achieved.The possible enhanced mechanism was also discussed.Furthermore,with simple sample pretreatment,the detection limit of 5μg/g Rhodamine B(RhB)in chili powders can be achieved.The results highlight the potential utility of Au@Au@Ag for detection of illegal food additives with low concentrations.