期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Au-Ag alloy nanoparticles with tunable cavity for plasmon-enhanced photocatalytic H2 evolution 被引量:5
1
作者 Xuanyu Yue Juan Hou +7 位作者 Haifeng Zhao Pengcheng Wu Yali Guo Qin Shi Long Chen Shanglong Peng Zhiyong Liu Guozhong Cao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第10期1-7,共7页
Au-Ag alloy nanoparticles with different cavity sizes have great potential for improving photocatalytic performance due to their tunable plasmon effect.In this study,galvanic replacement was combined with co-reduction... Au-Ag alloy nanoparticles with different cavity sizes have great potential for improving photocatalytic performance due to their tunable plasmon effect.In this study,galvanic replacement was combined with co-reduction with the reaction kinetics processes regulated to rapidly synthesize Au-Ag hollow alloy nanoparticles with tunable cavity sizes.The position of the localized surface plasmon resonance(LSPR)peak could be effectively adjusted between 490 nm and 713 nm by decreasing the cavity size of the Au-Ag hollow nanoparticles from 35 nm to 20 nm.The plasmon-enhanced photocatalytic H2 evolution of alloy nanoparticles with different cavity sizes was investigated.Compared with pure P25(TiO2),intact and thin-shelled Au-Ag hollow nanoparticles(HNPs)-supported photocatalyst exhibited an increase in the photocatalytic H2 evolution rate from 0.48μmol h^−1 to 4μmol h^−1 under full-spectrum irradiation.This improved photocatalytic performance was likely due to the plasmon-induced electromagnetic field effect,which caused strong photogenerated charge separation,rather than the generation of hot electrons. 展开更多
关键词 au-ag hollow alloy nanoparticles Galvanic displacement Controlled cavity sizes Photocatalysis PLASMON
下载PDF
ZnO nanorod decorated by Au-Ag alloy with greatly increased activity for photocatalytic ethylene oxidation 被引量:2
2
作者 Huishan Zhai Xiaolei Liu +6 位作者 Zeyan Wang Yuanyuan Liu Zhaoke Zheng Xiaoyan Qin Xiaoyang Zhang Peng Wang Baibiao Huang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第10期1613-1621,共9页
In recent years, the preservation of fruits and vegetables in cold storage has become an issue of increasing concern, ethylene plays a leading role among them. We found ZnO has the effect of degrading gaseous ethylene... In recent years, the preservation of fruits and vegetables in cold storage has become an issue of increasing concern, ethylene plays a leading role among them. We found ZnO has the effect of degrading gaseous ethylene, however its effect is not particularly satisfactory. Therefore, we used simple photo-deposition procedure and low-temperature calcination method to synthesize Au, Ag, and Au Ag alloy supported ZnO to improve the photocatalytic efficiency. Satisfactorily, after ZnO loaded with sole Au or Ag particles, the efficiency of ethylene degradation was 17.5 and 26.8 times than that of pure ZnO, showing a large increase in photocatalytic activity. However, the photocatalytic stability of Ag/ZnO was very poor, because Ag can be easily photooxidized to Ag2O. Surprisingly, when ZnO was successfully loaded with the Au Ag alloy, not only the photocatalytic activity was further improved to 94.8 times than that of pure ZnO, but also the photocatalytic stability was very good after 10 times of cycles. Characterization results explained that the Au-Ag alloy NPs modified ZnO showed great visible-light absorption because of the surface plasmon resonance(SPR) effect. Meanwhile, the higher photocurrent density showed the effective carrier separation ability in Au Ag/ZnO. Therefore, the cooperative action of plasmonic Au Ag bimetallic alloy NPs and efficient carrier separation capability result in the outstanding photoactivity of ethylene oxidation. At the same time, the formation of the alloy produced a new crystal structure different from Au and Ag, which overcomes the problem of poor stability of Ag/ZnO, and finally obtains Au Ag/ZnO photocatalyst with high activity and high stability. This work proposes a new concept of using metal alloys to remove ethylene in actual production. 展开更多
关键词 Surface plasmon resonance au-ag bimetallic alloy nanoparticles Cooperative action Effective carrier separation
下载PDF
Theoretical research on vacuum separation of Au-Ag alloy 被引量:3
3
作者 Shuang-ping WANG Jin-yang ZHAO +3 位作者 Bao-qiang XU Ling-xin KONG Wen-long JIANG Bin YANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第8期2719-2726,共8页
To provide an accurate prediction of the product component dependence of temperature and pressure in vacuum distillation and give convenient and efficient guidance for the designing of the process parameters of indust... To provide an accurate prediction of the product component dependence of temperature and pressure in vacuum distillation and give convenient and efficient guidance for the designing of the process parameters of industrial production, according to the molecular interaction volume model(MIVM), the separation coefficient(β) and vapor-liquid equilibrium composition of Au-Ag alloy at different temperatures are calculated. Combined with the vapor-liquid equilibrium(VLE) theory, the VLE phase diagrams, including the temperature-composition(T-x) and pressure-composition(p-x) diagrams of Au-Ag alloy in vacuum distillation are plotted. The triple points and condensation temperatures of gold and silver vapors are calculated as well. The results show that the β decreases and the contents of gold in vapor phase increase with the distillation temperature increasing. Low pressures have positive effect on the separation of Ag and Au. The difference between the condensation temperatures of gold and silver is about 450 K in the pressure range of 1-10 Pa. 展开更多
关键词 au-ag alloy vacuum separation molecular interaction volume model(MIVM) vapor-liquid equilibrium(VLE)phase diagram condensation temperature
下载PDF
The Fabrication and SERS Performance of Multi-layer Hollow Au-Ag Alloy Nano Urchins Structure-based SERS Fiber Probe
4
作者 HAO Zhenbang TIAN Qihang +4 位作者 CAO Shiyi HAN Xiaoyu ZHANG Jihong XIE Jun ZHAO Xiujian 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第2期274-279,共6页
Novel hollow Au Ag alloy nano urchins were synthesized via Ag seeds growth method,and self-assembly coated on the wall and end-tip of silica fiber for fiber probe fabrication.The nano urchins homogeneously distributed... Novel hollow Au Ag alloy nano urchins were synthesized via Ag seeds growth method,and self-assembly coated on the wall and end-tip of silica fiber for fiber probe fabrication.The nano urchins homogeneously distributed on fiber surface because of fiber silanization.The sizes and tip sharpness of the nano-urchins could be controlled by Ag seeds.The elements distribution analysis indicated there was high Ag content in tip-top for better surface enhance Raman scattering performance.The detectable concentration could be as low as 10-8 M using crystal violet molecules as analyte.Moreover,the fiber probes were stable in air,due to Au in the alloy.This fiber probe could be used for low content single molecular analysis. 展开更多
关键词 surface enhanced raman spectroscopy hollow au-ag alloy nano urchins fiber probe
下载PDF
Au-Ag合金纳米海胆结构用于农药残留的SERS检测 被引量:4
5
作者 周侠 张莉 +2 位作者 王红艳 王雪艳 杨良保 《光散射学报》 北大核心 2017年第4期309-313,共5页
本文通过合成高密度尖端的Au-Ag合金纳米海胆,实现了对有机磷农药乙基对氧磷和有机氯农药γ-六六六的检测。首先合成Ag纳米颗粒,然后用L-多巴还原Ag纳米颗粒,最终形成高密度尖端Au-Ag合金纳米海胆结构。高密度尖端结构用作SERS基底,通... 本文通过合成高密度尖端的Au-Ag合金纳米海胆,实现了对有机磷农药乙基对氧磷和有机氯农药γ-六六六的检测。首先合成Ag纳米颗粒,然后用L-多巴还原Ag纳米颗粒,最终形成高密度尖端Au-Ag合金纳米海胆结构。高密度尖端结构用作SERS基底,通过便携式拉曼光谱仪实现对有机磷农药乙基对氧磷和有机氯农药γ-六六六的检测,结果显示具有较高的灵敏度。该方法简单、方便、灵敏度高,有望实现对农药残留高灵敏的现场检测。 展开更多
关键词 表面增强拉曼光谱 au-ag合金纳米海胆 便携式拉曼光谱仪 农药残留检测
下载PDF
应用球形和海胆状金混合SERS基底检测高环多环芳烃 被引量:6
6
作者 史晓凤 孟辰 +3 位作者 马丽珍 马海宽 张心敏 马君 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2016年第7期2128-2133,共6页
合成了海胆状金银复合纳米材料,并与球形金纳米材料混合作为表面增强拉曼活性基底实现了对水中高环多环芳烃的痕量检测。对海胆状材料进行表征,粒径大小约为300~400 nm,表面有40~100nm明显的刺状凸起。与球形金溶胶混合后并优化pH值及... 合成了海胆状金银复合纳米材料,并与球形金纳米材料混合作为表面增强拉曼活性基底实现了对水中高环多环芳烃的痕量检测。对海胆状材料进行表征,粒径大小约为300~400 nm,表面有40~100nm明显的刺状凸起。与球形金溶胶混合后并优化pH值及混合比例等参数,产生了优于球形金溶胶2~3倍的增强效果。利用此增强基底检测了危害严重的高环多环芳烃污染物——芘(四环)、苯并蒽(四环)、苯并芘(五环),得到的光谱数据反映出混合SERS基底有良好的重复性和稳定性,对测得光谱进行特征峰归属分析,固体拉曼光谱与水溶液SERS光谱有确定的对应关系,并且在低浓度范围多环芳烃特征峰峰强与其水溶液浓度有良好的线性关系。经计算,芘(四环)、苯并蒽(四环)、苯并芘(五环)的检测限分别为0.44,2.92和1.64 nmol·L^(-1)。该研究的创新点为合成了海胆金纳米颗粒,与球形金溶胶混合后制成新型高效SERS检测基底;选用自制高效SERS基底,实现了高环PAHs痕量检测。结果表明,利用该方法制备的活性基底,可实现对水中高环多环芳烃的痕量检测,为检测水中高环多环芳烃提供了实验室依据。 展开更多
关键词 表面增强拉曼光谱 海胆状纳米材料 高环多环芳烃
下载PDF
Surface micro/nanostructure evolution of Au-Ag alloy nanoplates: Synthesis, simulation, plasmonic photothermal and surface-enhanced Raman scattering applications 被引量:6
7
作者 Hongmei Qian Meng Xu +7 位作者 Xiaowei Li Muwei Ji Lei Cheng Anwer Shoaib Jiajia Liu Lan Jiang Hesun Zhu Jiatao Zhang 《Nano Research》 SCIE EI CAS CSCD 2016年第3期876-885,共10页
This study reports the controllable surface roughening of Au-Ag alloy nanoplates via the galvanic replacement reaction between single-crystalline triangular Ag nanoplates and HAuC14 in an aqueous medium. With a combin... This study reports the controllable surface roughening of Au-Ag alloy nanoplates via the galvanic replacement reaction between single-crystalline triangular Ag nanoplates and HAuC14 in an aqueous medium. With a combination of experimental evidence and finite element method (FEM) simulations, improved electromagnetic field (E-field) enhancement around the surface-roughened Au- Ag nanoplates and tunable light absorption in the near-infrared (NIR) region (-800-1,400 nm) are achieved by the synergistic effects of the localized surface plasmon resonance (LSPR) from the maintained triangular shape, the controllable Au-Ag alloy composition, and the increased surface roughness. The NIR light extinction enables an active photothermal effect as well as a high photothermal conversion efficiency (78.5%). The well-maintained triangular shape, surface- roughened evolutions of both micro- and nanostructures, and tunable NIR surface plasmon resonance effect enable potential applications of the Au-Ag alloy nanoplates in surface-enhanced Raman spectroscopic detection of biomolecules through 785-nm laser excitation. 展开更多
关键词 au-ag alloy nanoplates surface roughening finite element method(FEM) simulation PHOTOTHERMAL surface enhanced Ramanscattering (SERS)
原文传递
Effective fabrication of porous Au-Ag alloy nanorods for in situ Raman monitoring catalytic oxidation and reduction reactions
8
作者 Shanlin Ke Caixia Kan +5 位作者 Xingzhong Zhu Changshun Wang Weijian Gao Zhaosheng Li Xiaoguang Zhu Daning Shi 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第32期262-269,共8页
Porous metal nanostructures exhibit excellent catalytic properties due to their high surface-to-volume ratios and abundant catalytic active sites. However, it is still challenging to control nanopores density and stru... Porous metal nanostructures exhibit excellent catalytic properties due to their high surface-to-volume ratios and abundant catalytic active sites. However, it is still challenging to control nanopores density and structural features in a facile route and the preparation of porous alloy nanorods for catalytic application has not been well explored. In this work, we demonstrate a synthetic strategy to fabricate highly porous Au–Ag alloy nanorods(P-Au Ag NRs) by critically dealloying Ag atoms from homogeneous solid Au–Ag alloy nanorods(Au Ag NRs). Combining the merits of the tunable plasmonic properties of noble metal nanorods, excellent stabilities of alloys, and superior catalytic activities of porous structures, we use the P-Au Ag NRs as a Raman probe for the in situ monitoring of the catalytic oxidation of 3,3',5,5' tetramethylbenzidine(TMB) and reduction of 4-nitrothiophenol(4-NTP). We also compare their compositiondependent catalytic activities. The results show that P-Au Ag NRs possess superior chemical stability and higher catalytic activity than those of core-shell structures due to synergistic structural and chemical mechanisms. This strategy provides a predictive design approach for the next-generation alloy catalysts with high-performance. 展开更多
关键词 Catalysis Porous au-ag alloy nanorod High-index facets Raman monitoring Oxidation and reduction
原文传递
Pt-Ni nanourchins as electrocatalysts for oxygen reduction reaction 被引量:5
9
作者 Qiaowan CHANG Yuan XU +2 位作者 Shangqian ZHU Fei XIAO Minhua SHAO 《Frontiers in Energy》 SCIE CSCD 2017年第3期254-259,共6页
Pt-Ni bimetallic alloys with various nanos-tructures have shown excellent activity toward oxygen reduction reaction (ORR). The ORR activity is highly dependent on the structure of the catalyst. In this paper, Pt-Ni ... Pt-Ni bimetallic alloys with various nanos-tructures have shown excellent activity toward oxygen reduction reaction (ORR). The ORR activity is highly dependent on the structure of the catalyst. In this paper, Pt-Ni nanourchins were synthesized with an average size of 50 nm consisting of 10-20 nanorods and nanooctahedra by adjusting the synthesis condition. The formation of Pt-Ni nanourchins is mainly dependent on the adding order of solvents (benzyl ether, oleylamine and oleic acid). Pt-Ni nanourchins present a reasonable high ORR activity (0.81 A/mg at 0.9 V). 展开更多
关键词 Pt-Ni alloys nanourchins oxygen reduction reaction shape control fuel cells
原文传递
Enzyme-amplified SERS immunoassay with Ag-Au bimetallic SERS hot spots 被引量:5
10
作者 Xuan-Hung Pham Eunil Hahm +8 位作者 Tae Han Kim Hyung-Mo Kim Sang Hun Lee Sang Chul Lee Homan Kang Ho-Young Lee Dae Hong Jeong Hak Soo Choi Bong-Hyun Jun 《Nano Research》 SCIE EI CAS CSCD 2020年第12期3338-3346,共9页
Surface-enhanced Raman scattering(SERS)enables rapid detection of single molecules with high specificity.However,quantitative and sensitive SERS analysis has been a challenge due to the lack of reliable SERS-active ma... Surface-enhanced Raman scattering(SERS)enables rapid detection of single molecules with high specificity.However,quantitative and sensitive SERS analysis has been a challenge due to the lack of reliable SERS-active materials.In this study,we developed a quantitative SERS-based immunoassay using enzyme-guided Ag growth on Raman labeling compound(RLC)-immobilized gold nanoparticle(Au NP)-assembled silica NPs(SiO2@Au-RLC@Ag).The enzyme amplified Ag+reduction as well as Ag growth on the RLC-immobilized Au NP-assembled silica NPs(SiO2@Au-RLC),which resulted in a significant increase in SERS signal.In the presence of target antigens such as immunoglobulinG(IgG)or prostate-specific antigen(PSA),Ab1-Antigen-Ab2 immune complex with alkaline phosphatase triggered an enzyme-catalyzed reaction to convert 2-phospho-L-ascorbic acid(2-phospho-L-AA)to ascorbic acid(AA).As produced AA reduced Ag+to Ag,forming an Ag hot spot on the surface of SiO2@Au-RLC,which enhanced the SERS signal of SiO2@Au-RLC@Ag in a solution with a target antigen concentration.The plasmonic immunoassay for IgG detection showed a high linearity of SERS intensity in the range of 0.6 to 9.0 ng/mL with a detection limit(LOD)of 0.09 ng/mL,while an LOD of 0.006 ng/mL was obtained for PSA.The results indicate that the sensitivity of our novel SERS-based immunoassay is higher than that of conventional enzyme-based colorimetric immunoassays. 展开更多
关键词 surface-enhanced Raman scattering(SERS)-based immunoassay au-ag alloy surface-enhanced Raman scattering silica template immunoglobulin G(IgG)detection
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部