Triangular Au-Ag framework nanostructures (TFN) were synthesized via a multi-step galvanic replacement reaction (MGRR) of single-crystalline triangular silver nanoplates in a chlorauric acid (HAuCl4) solution at...Triangular Au-Ag framework nanostructures (TFN) were synthesized via a multi-step galvanic replacement reaction (MGRR) of single-crystalline triangular silver nanoplates in a chlorauric acid (HAuCl4) solution at room temperature. The morphological, compositional, and crystal structural changes involved with reaction steps were analyzed by using transmission electron microscopy(TEM), energy-dispersive X-ray spectrometry (EDX), and X-ray diffraction. TEM combined with EDX and selected area electron diffraction confirmed the replacement of Ag with Au. The in-plane dipolar surface plasmon resonance (SPR) absorption band of the Ag nanoplates locating initially at around 700 nm gradually redshifted to 1 100 nm via a multi-stage replacement manner after 7 stages. The adding amount of HAuCl4 per stage influenced the average redshift value per stage, thus enabled a fine tuning of the in-plane dipolar band. A proposed formation mechanism of the original Ag nanoplates developing pores while growing Au nanoparticles covering this underlying structure at more reaction steps was confirmed by exploiting surface-enhanced Raman scattering (SERS).展开更多
The newly discovered Changkeng Au-Ag deposit is a new type of sediment-hostedprecious metal deposit. Most of the previous researchers believed that the deposit was formed bymeteoric water convection. By using a high v...The newly discovered Changkeng Au-Ag deposit is a new type of sediment-hostedprecious metal deposit. Most of the previous researchers believed that the deposit was formed bymeteoric water convection. By using a high vacuum quadrupole gas mass spectrometric system, ninelight hydrocarbons have been recognized in the fluid inclusions in ore minerals collected from theChangkeng deposit. The hydrocarbons are composed mainly of saturated alkanes C_(1-4) and unsaturatedalkenes C_(2-4) and aromatic hydrocarbons, in which the alkanes are predominant, while the contentsof alkenes and aromatic hydrocarbons are very low. The sum alka/sum alke ratio of most samples ishigher than 100, suggesting that those hydrocarbons are mainly generated by pyrolysis of kerogens insedimentary rocks caused by water-rock interactions at medium-low temperatures, and themetallogenic processes might have not been affected by magmatic activity. A thermodynamiccalculation shows that the light hydrocarbons have reached chemical equilibrium at temperatureshigher than 200 deg C, and they may have been generated in the deep part of sedimentary basins(e.g., the Sanzhou basin) and then be transported by ore-forming fluids to a shallow position of thebasin via a long distance. Most of the organic gases are generated by pyrolysis of the type IIkerogens (kukersite) in sedimentary host rocks, only a few by microorganism activity. Thecompositions and various parameters of light hydrocarbons in gold ores are quite similar to those insilver ores, suggesting that the gold and silver ores may have similar metallogenic processes.Based on the compositions of organic gases in fluid inclusions, the authors infer that the Changkengdeposit may be of a tectonic setting of continental rift. The results of this study support fromone aspect the authors' opinion that the Changkeng deposit is not formed by meteoric waterconvection, and that its genesis has a close relationship with the evolution of the Sanzhou basin,so it belongs to the sedimentary hot brine transformed deposit.展开更多
Au-Ag alloy nanoparticles with different cavity sizes have great potential for improving photocatalytic performance due to their tunable plasmon effect.In this study,galvanic replacement was combined with co-reduction...Au-Ag alloy nanoparticles with different cavity sizes have great potential for improving photocatalytic performance due to their tunable plasmon effect.In this study,galvanic replacement was combined with co-reduction with the reaction kinetics processes regulated to rapidly synthesize Au-Ag hollow alloy nanoparticles with tunable cavity sizes.The position of the localized surface plasmon resonance(LSPR)peak could be effectively adjusted between 490 nm and 713 nm by decreasing the cavity size of the Au-Ag hollow nanoparticles from 35 nm to 20 nm.The plasmon-enhanced photocatalytic H2 evolution of alloy nanoparticles with different cavity sizes was investigated.Compared with pure P25(TiO2),intact and thin-shelled Au-Ag hollow nanoparticles(HNPs)-supported photocatalyst exhibited an increase in the photocatalytic H2 evolution rate from 0.48μmol h^−1 to 4μmol h^−1 under full-spectrum irradiation.This improved photocatalytic performance was likely due to the plasmon-induced electromagnetic field effect,which caused strong photogenerated charge separation,rather than the generation of hot electrons.展开更多
To provide an accurate prediction of the product component dependence of temperature and pressure in vacuum distillation and give convenient and efficient guidance for the designing of the process parameters of indust...To provide an accurate prediction of the product component dependence of temperature and pressure in vacuum distillation and give convenient and efficient guidance for the designing of the process parameters of industrial production, according to the molecular interaction volume model(MIVM), the separation coefficient(β) and vapor-liquid equilibrium composition of Au-Ag alloy at different temperatures are calculated. Combined with the vapor-liquid equilibrium(VLE) theory, the VLE phase diagrams, including the temperature-composition(T-x) and pressure-composition(p-x) diagrams of Au-Ag alloy in vacuum distillation are plotted. The triple points and condensation temperatures of gold and silver vapors are calculated as well. The results show that the β decreases and the contents of gold in vapor phase increase with the distillation temperature increasing. Low pressures have positive effect on the separation of Ag and Au. The difference between the condensation temperatures of gold and silver is about 450 K in the pressure range of 1-10 Pa.展开更多
In recent years, the preservation of fruits and vegetables in cold storage has become an issue of increasing concern, ethylene plays a leading role among them. We found ZnO has the effect of degrading gaseous ethylene...In recent years, the preservation of fruits and vegetables in cold storage has become an issue of increasing concern, ethylene plays a leading role among them. We found ZnO has the effect of degrading gaseous ethylene, however its effect is not particularly satisfactory. Therefore, we used simple photo-deposition procedure and low-temperature calcination method to synthesize Au, Ag, and Au Ag alloy supported ZnO to improve the photocatalytic efficiency. Satisfactorily, after ZnO loaded with sole Au or Ag particles, the efficiency of ethylene degradation was 17.5 and 26.8 times than that of pure ZnO, showing a large increase in photocatalytic activity. However, the photocatalytic stability of Ag/ZnO was very poor, because Ag can be easily photooxidized to Ag2O. Surprisingly, when ZnO was successfully loaded with the Au Ag alloy, not only the photocatalytic activity was further improved to 94.8 times than that of pure ZnO, but also the photocatalytic stability was very good after 10 times of cycles. Characterization results explained that the Au-Ag alloy NPs modified ZnO showed great visible-light absorption because of the surface plasmon resonance(SPR) effect. Meanwhile, the higher photocurrent density showed the effective carrier separation ability in Au Ag/ZnO. Therefore, the cooperative action of plasmonic Au Ag bimetallic alloy NPs and efficient carrier separation capability result in the outstanding photoactivity of ethylene oxidation. At the same time, the formation of the alloy produced a new crystal structure different from Au and Ag, which overcomes the problem of poor stability of Ag/ZnO, and finally obtains Au Ag/ZnO photocatalyst with high activity and high stability. This work proposes a new concept of using metal alloys to remove ethylene in actual production.展开更多
基于密度泛函理论框架下的第一性原理计算,研究了Au-Ag合金纳米管同轴填充不同线径锯齿型(n,0)碳纳米管所形成复合系统的稳定性、电子特性和力学性能.结果表明,内、外管间距约为4.20的Au x Ag 4-x@(15,0)复合系统为具有较大填充率的最...基于密度泛函理论框架下的第一性原理计算,研究了Au-Ag合金纳米管同轴填充不同线径锯齿型(n,0)碳纳米管所形成复合系统的稳定性、电子特性和力学性能.结果表明,内、外管间距约为4.20的Au x Ag 4-x@(15,0)复合系统为具有较大填充率的最稳定结构.能带结构分析表明,相对于自由Au-Ag合金纳米管复合系统的量子电导有所增加,电子态密度分析表明复合系统中的传导电子主要来源于内部Au原子和Ag原子的s电子以及外部C原子的p电子.相对于自由金属纳米管而言,碳纳米管的包裹使得金属纳米管的轴向拉伸临界应变和理想强度大大增加,有效地提高了其力学性能.展开更多
Novel hollow Au Ag alloy nano urchins were synthesized via Ag seeds growth method,and self-assembly coated on the wall and end-tip of silica fiber for fiber probe fabrication.The nano urchins homogeneously distributed...Novel hollow Au Ag alloy nano urchins were synthesized via Ag seeds growth method,and self-assembly coated on the wall and end-tip of silica fiber for fiber probe fabrication.The nano urchins homogeneously distributed on fiber surface because of fiber silanization.The sizes and tip sharpness of the nano-urchins could be controlled by Ag seeds.The elements distribution analysis indicated there was high Ag content in tip-top for better surface enhance Raman scattering performance.The detectable concentration could be as low as 10-8 M using crystal violet molecules as analyte.Moreover,the fiber probes were stable in air,due to Au in the alloy.This fiber probe could be used for low content single molecular analysis.展开更多
A nanostructured gold-silver soaked in polyethylene glycol 400 (Au-Ag@PEG) is designed using gold(I) chloride and silver nitrate (AgNO3) as precursors and, polyethylene glycol 400 (PEG) as capping agent. The result of...A nanostructured gold-silver soaked in polyethylene glycol 400 (Au-Ag@PEG) is designed using gold(I) chloride and silver nitrate (AgNO3) as precursors and, polyethylene glycol 400 (PEG) as capping agent. The result of the structure characterization using Selected Area Electron Diffraction (SAED) has showed that the synthesized nanomaterial has a good crystallinity while Transmission Electron Microscopy (TEM), energy dispersive X-ray spectrometry (EDX) and Dynamic Light Scattering (DLS) measurements suggest mixed Au-Ag nanoparticles with an average diameter size of around 7 nm and 30 nm for Au and Ag respectively.展开更多
基金Project(10804101)supported by the National Natural Science Foundation of ChinaProject(2007CB815102)supported by the National Basic Research Program of ChinaProject(2007B08007)supported by the Science and Technology Development Foundation of Chinese Academy of Engineering Physics,China
文摘Triangular Au-Ag framework nanostructures (TFN) were synthesized via a multi-step galvanic replacement reaction (MGRR) of single-crystalline triangular silver nanoplates in a chlorauric acid (HAuCl4) solution at room temperature. The morphological, compositional, and crystal structural changes involved with reaction steps were analyzed by using transmission electron microscopy(TEM), energy-dispersive X-ray spectrometry (EDX), and X-ray diffraction. TEM combined with EDX and selected area electron diffraction confirmed the replacement of Ag with Au. The in-plane dipolar surface plasmon resonance (SPR) absorption band of the Ag nanoplates locating initially at around 700 nm gradually redshifted to 1 100 nm via a multi-stage replacement manner after 7 stages. The adding amount of HAuCl4 per stage influenced the average redshift value per stage, thus enabled a fine tuning of the in-plane dipolar band. A proposed formation mechanism of the original Ag nanoplates developing pores while growing Au nanoparticles covering this underlying structure at more reaction steps was confirmed by exploiting surface-enhanced Raman scattering (SERS).
基金supported by the National Natural Science Foundation of China(Nos.49773195 and 49502029)the Visiting Scholar Foundation of Labs in Universities,Research Foundation of the State Key Laboratory of Metallogenesis in Nanjing University+1 种基金Research Foundation of Youth Teachers of National Educational Department and the Training Program of Medium-youth Teachers supported by the Lingnan Foundationsupported by the“Trans-century Training Programme Foundation for the Talents”by the Ministry of Education.
文摘The newly discovered Changkeng Au-Ag deposit is a new type of sediment-hostedprecious metal deposit. Most of the previous researchers believed that the deposit was formed bymeteoric water convection. By using a high vacuum quadrupole gas mass spectrometric system, ninelight hydrocarbons have been recognized in the fluid inclusions in ore minerals collected from theChangkeng deposit. The hydrocarbons are composed mainly of saturated alkanes C_(1-4) and unsaturatedalkenes C_(2-4) and aromatic hydrocarbons, in which the alkanes are predominant, while the contentsof alkenes and aromatic hydrocarbons are very low. The sum alka/sum alke ratio of most samples ishigher than 100, suggesting that those hydrocarbons are mainly generated by pyrolysis of kerogens insedimentary rocks caused by water-rock interactions at medium-low temperatures, and themetallogenic processes might have not been affected by magmatic activity. A thermodynamiccalculation shows that the light hydrocarbons have reached chemical equilibrium at temperatureshigher than 200 deg C, and they may have been generated in the deep part of sedimentary basins(e.g., the Sanzhou basin) and then be transported by ore-forming fluids to a shallow position of thebasin via a long distance. Most of the organic gases are generated by pyrolysis of the type IIkerogens (kukersite) in sedimentary host rocks, only a few by microorganism activity. Thecompositions and various parameters of light hydrocarbons in gold ores are quite similar to those insilver ores, suggesting that the gold and silver ores may have similar metallogenic processes.Based on the compositions of organic gases in fluid inclusions, the authors infer that the Changkengdeposit may be of a tectonic setting of continental rift. The results of this study support fromone aspect the authors' opinion that the Changkeng deposit is not formed by meteoric waterconvection, and that its genesis has a close relationship with the evolution of the Sanzhou basin,so it belongs to the sedimentary hot brine transformed deposit.
基金supported by the National Natural Science Foundation of China(No.61704114)the Key areas of Science and Technology Program of Xinjiang Production and Construction Corps,China(No.2018AB004)the National Science Foundation(CBET-1803256).
文摘Au-Ag alloy nanoparticles with different cavity sizes have great potential for improving photocatalytic performance due to their tunable plasmon effect.In this study,galvanic replacement was combined with co-reduction with the reaction kinetics processes regulated to rapidly synthesize Au-Ag hollow alloy nanoparticles with tunable cavity sizes.The position of the localized surface plasmon resonance(LSPR)peak could be effectively adjusted between 490 nm and 713 nm by decreasing the cavity size of the Au-Ag hollow nanoparticles from 35 nm to 20 nm.The plasmon-enhanced photocatalytic H2 evolution of alloy nanoparticles with different cavity sizes was investigated.Compared with pure P25(TiO2),intact and thin-shelled Au-Ag hollow nanoparticles(HNPs)-supported photocatalyst exhibited an increase in the photocatalytic H2 evolution rate from 0.48μmol h^−1 to 4μmol h^−1 under full-spectrum irradiation.This improved photocatalytic performance was likely due to the plasmon-induced electromagnetic field effect,which caused strong photogenerated charge separation,rather than the generation of hot electrons.
基金supported by the National Natural Science Foundation of China (No.52064029)Yunling Scholarship of Yunnan Province Ten-Thousand Plan,China (No.KKRC201952012)Yunnan Province Ten Thousand Talents Program-Youth Top Talent Project,China (No.2018-73)。
文摘To provide an accurate prediction of the product component dependence of temperature and pressure in vacuum distillation and give convenient and efficient guidance for the designing of the process parameters of industrial production, according to the molecular interaction volume model(MIVM), the separation coefficient(β) and vapor-liquid equilibrium composition of Au-Ag alloy at different temperatures are calculated. Combined with the vapor-liquid equilibrium(VLE) theory, the VLE phase diagrams, including the temperature-composition(T-x) and pressure-composition(p-x) diagrams of Au-Ag alloy in vacuum distillation are plotted. The triple points and condensation temperatures of gold and silver vapors are calculated as well. The results show that the β decreases and the contents of gold in vapor phase increase with the distillation temperature increasing. Low pressures have positive effect on the separation of Ag and Au. The difference between the condensation temperatures of gold and silver is about 450 K in the pressure range of 1-10 Pa.
文摘In recent years, the preservation of fruits and vegetables in cold storage has become an issue of increasing concern, ethylene plays a leading role among them. We found ZnO has the effect of degrading gaseous ethylene, however its effect is not particularly satisfactory. Therefore, we used simple photo-deposition procedure and low-temperature calcination method to synthesize Au, Ag, and Au Ag alloy supported ZnO to improve the photocatalytic efficiency. Satisfactorily, after ZnO loaded with sole Au or Ag particles, the efficiency of ethylene degradation was 17.5 and 26.8 times than that of pure ZnO, showing a large increase in photocatalytic activity. However, the photocatalytic stability of Ag/ZnO was very poor, because Ag can be easily photooxidized to Ag2O. Surprisingly, when ZnO was successfully loaded with the Au Ag alloy, not only the photocatalytic activity was further improved to 94.8 times than that of pure ZnO, but also the photocatalytic stability was very good after 10 times of cycles. Characterization results explained that the Au-Ag alloy NPs modified ZnO showed great visible-light absorption because of the surface plasmon resonance(SPR) effect. Meanwhile, the higher photocurrent density showed the effective carrier separation ability in Au Ag/ZnO. Therefore, the cooperative action of plasmonic Au Ag bimetallic alloy NPs and efficient carrier separation capability result in the outstanding photoactivity of ethylene oxidation. At the same time, the formation of the alloy produced a new crystal structure different from Au and Ag, which overcomes the problem of poor stability of Ag/ZnO, and finally obtains Au Ag/ZnO photocatalyst with high activity and high stability. This work proposes a new concept of using metal alloys to remove ethylene in actual production.
文摘基于密度泛函理论框架下的第一性原理计算,研究了Au-Ag合金纳米管同轴填充不同线径锯齿型(n,0)碳纳米管所形成复合系统的稳定性、电子特性和力学性能.结果表明,内、外管间距约为4.20的Au x Ag 4-x@(15,0)复合系统为具有较大填充率的最稳定结构.能带结构分析表明,相对于自由Au-Ag合金纳米管复合系统的量子电导有所增加,电子态密度分析表明复合系统中的传导电子主要来源于内部Au原子和Ag原子的s电子以及外部C原子的p电子.相对于自由金属纳米管而言,碳纳米管的包裹使得金属纳米管的轴向拉伸临界应变和理想强度大大增加,有效地提高了其力学性能.
基金Funded by the Project of Sanya Yazhou Bay Science and Technology City (No.SCKJ-JYRC-2022-44)the Opening Funding of the State Key Laboratory of Silicate Materials for Architecture (SySJJ2018-06)+1 种基金the Fundamental Research Funds for the Central Universities (WUT:2016VA096),Chinathe Research Program (No.S2634339)through a Grant Provided by the Ministry of SMEs and Startups。
文摘Novel hollow Au Ag alloy nano urchins were synthesized via Ag seeds growth method,and self-assembly coated on the wall and end-tip of silica fiber for fiber probe fabrication.The nano urchins homogeneously distributed on fiber surface because of fiber silanization.The sizes and tip sharpness of the nano-urchins could be controlled by Ag seeds.The elements distribution analysis indicated there was high Ag content in tip-top for better surface enhance Raman scattering performance.The detectable concentration could be as low as 10-8 M using crystal violet molecules as analyte.Moreover,the fiber probes were stable in air,due to Au in the alloy.This fiber probe could be used for low content single molecular analysis.
文摘A nanostructured gold-silver soaked in polyethylene glycol 400 (Au-Ag@PEG) is designed using gold(I) chloride and silver nitrate (AgNO3) as precursors and, polyethylene glycol 400 (PEG) as capping agent. The result of the structure characterization using Selected Area Electron Diffraction (SAED) has showed that the synthesized nanomaterial has a good crystallinity while Transmission Electron Microscopy (TEM), energy dispersive X-ray spectrometry (EDX) and Dynamic Light Scattering (DLS) measurements suggest mixed Au-Ag nanoparticles with an average diameter size of around 7 nm and 30 nm for Au and Ag respectively.