The newly discovered Changkeng Au-Ag deposit is a new type of sediment-hostedprecious metal deposit. Most of the previous researchers believed that the deposit was formed bymeteoric water convection. By using a high v...The newly discovered Changkeng Au-Ag deposit is a new type of sediment-hostedprecious metal deposit. Most of the previous researchers believed that the deposit was formed bymeteoric water convection. By using a high vacuum quadrupole gas mass spectrometric system, ninelight hydrocarbons have been recognized in the fluid inclusions in ore minerals collected from theChangkeng deposit. The hydrocarbons are composed mainly of saturated alkanes C_(1-4) and unsaturatedalkenes C_(2-4) and aromatic hydrocarbons, in which the alkanes are predominant, while the contentsof alkenes and aromatic hydrocarbons are very low. The sum alka/sum alke ratio of most samples ishigher than 100, suggesting that those hydrocarbons are mainly generated by pyrolysis of kerogens insedimentary rocks caused by water-rock interactions at medium-low temperatures, and themetallogenic processes might have not been affected by magmatic activity. A thermodynamiccalculation shows that the light hydrocarbons have reached chemical equilibrium at temperatureshigher than 200 deg C, and they may have been generated in the deep part of sedimentary basins(e.g., the Sanzhou basin) and then be transported by ore-forming fluids to a shallow position of thebasin via a long distance. Most of the organic gases are generated by pyrolysis of the type IIkerogens (kukersite) in sedimentary host rocks, only a few by microorganism activity. Thecompositions and various parameters of light hydrocarbons in gold ores are quite similar to those insilver ores, suggesting that the gold and silver ores may have similar metallogenic processes.Based on the compositions of organic gases in fluid inclusions, the authors infer that the Changkengdeposit may be of a tectonic setting of continental rift. The results of this study support fromone aspect the authors' opinion that the Changkeng deposit is not formed by meteoric waterconvection, and that its genesis has a close relationship with the evolution of the Sanzhou basin,so it belongs to the sedimentary hot brine transformed deposit.展开更多
The laboratories in the bauxite processing industry are always under a heavy workload of sample collection, analysis, and compilation of the results. After size reduction from grinding mills, the samples of bauxite ar...The laboratories in the bauxite processing industry are always under a heavy workload of sample collection, analysis, and compilation of the results. After size reduction from grinding mills, the samples of bauxite are collected after intervals of 3 to 4 hours. Large bauxite processing industries producing 1 million tons of pure aluminium can have three grinding mills. Thus, the total number of samples to be tested in one day reaches a figure of 18 to 24. The sample of bauxite ore coming from the grinding mill is tested for its particle size and composition. For testing the composition, the bauxite ore sample is first prepared by fusing it with X-ray flux. Then the sample is sent for X-ray fluorescence analysis. Afterwards, the crucibles are washed in ultrasonic baths to be used for the next testing. The whole procedure takes about 2 - 3 hours. With a large number of samples reaching the laboratory, the chances of error in composition analysis increase. In this study, we have used a composite sampling methodology to reduce the number of samples reaching the laboratory without compromising their validity. The results of the average composition of fifteen samples were measured against composite samples. The mean of difference was calculated. The standard deviation and paired t-test values were evaluated against predetermined critical values obtained using a two-tailed test. It was found from the results that paired test-t values were much lower than the critical values thus validating the composition attained through composite sampling. The composite sampling approach not only reduced the number of samples but also the chemicals used in the laboratory. The objective of improved analytical protocol to reduce the number of samples reaching the laboratory was successfully achieved without compromising the quality of analytical results.展开更多
ORGANIC matters in the ore-forming fluids are composed mainly of light hydrocarbons. Because of the small amount of hydrocarbons in fluid inclusions, it is quite difficult to study their behavior in mineralizing proce...ORGANIC matters in the ore-forming fluids are composed mainly of light hydrocarbons. Because of the small amount of hydrocarbons in fluid inclusions, it is quite difficult to study their behavior in mineralizing processes, excepting methane (CH<sub>4</sub>). In this work, we used a high vacuum quadrupole gas massspectrometer system to determine the content and composition of light hydrocarbons (C<sub>1-7</sub>) in fluid inclusions in minerals collected from Changkeng Au-Ag deposit. The geological significance of the new data forgenesis of the deposit has been discussed briefly.展开更多
At the beginning of rare earth industry,several days are normally required for characterization of rare earth elements(REEs)fractionation in ore samples.Herein,rapid fractionation analysis of 15 REEs and accompanied m...At the beginning of rare earth industry,several days are normally required for characterization of rare earth elements(REEs)fractionation in ore samples.Herein,rapid fractionation analysis of 15 REEs and accompanied metal(Fe,Mn,etc.)in ore samples has been achieved within 1 h using ICP-MS with a homemade device for online sequential solvent extraction.As a result,five fractionations for REEs occurrences,i.e.,water soluble,exchangeable,reducible,oxidizable and crystalline,have been identified,offering chemical insights which not only reveal the formation mechanism of REEs ores but also show great implications for guiding the exploitation and separation of REEs.In comparison with conventional methods,the present approach significantly shortened the analysis time(1 h vs.~80 h)and reduced the sample consumption(1.0 mg vs.5.0 g)with high recovery(>95%),providing a useful platform for the rapid quantitative fractionation analysis of REEs in complexed samples such as ore and fossils.展开更多
基金supported by the National Natural Science Foundation of China(Nos.49773195 and 49502029)the Visiting Scholar Foundation of Labs in Universities,Research Foundation of the State Key Laboratory of Metallogenesis in Nanjing University+1 种基金Research Foundation of Youth Teachers of National Educational Department and the Training Program of Medium-youth Teachers supported by the Lingnan Foundationsupported by the“Trans-century Training Programme Foundation for the Talents”by the Ministry of Education.
文摘The newly discovered Changkeng Au-Ag deposit is a new type of sediment-hostedprecious metal deposit. Most of the previous researchers believed that the deposit was formed bymeteoric water convection. By using a high vacuum quadrupole gas mass spectrometric system, ninelight hydrocarbons have been recognized in the fluid inclusions in ore minerals collected from theChangkeng deposit. The hydrocarbons are composed mainly of saturated alkanes C_(1-4) and unsaturatedalkenes C_(2-4) and aromatic hydrocarbons, in which the alkanes are predominant, while the contentsof alkenes and aromatic hydrocarbons are very low. The sum alka/sum alke ratio of most samples ishigher than 100, suggesting that those hydrocarbons are mainly generated by pyrolysis of kerogens insedimentary rocks caused by water-rock interactions at medium-low temperatures, and themetallogenic processes might have not been affected by magmatic activity. A thermodynamiccalculation shows that the light hydrocarbons have reached chemical equilibrium at temperatureshigher than 200 deg C, and they may have been generated in the deep part of sedimentary basins(e.g., the Sanzhou basin) and then be transported by ore-forming fluids to a shallow position of thebasin via a long distance. Most of the organic gases are generated by pyrolysis of the type IIkerogens (kukersite) in sedimentary host rocks, only a few by microorganism activity. Thecompositions and various parameters of light hydrocarbons in gold ores are quite similar to those insilver ores, suggesting that the gold and silver ores may have similar metallogenic processes.Based on the compositions of organic gases in fluid inclusions, the authors infer that the Changkengdeposit may be of a tectonic setting of continental rift. The results of this study support fromone aspect the authors' opinion that the Changkeng deposit is not formed by meteoric waterconvection, and that its genesis has a close relationship with the evolution of the Sanzhou basin,so it belongs to the sedimentary hot brine transformed deposit.
文摘The laboratories in the bauxite processing industry are always under a heavy workload of sample collection, analysis, and compilation of the results. After size reduction from grinding mills, the samples of bauxite are collected after intervals of 3 to 4 hours. Large bauxite processing industries producing 1 million tons of pure aluminium can have three grinding mills. Thus, the total number of samples to be tested in one day reaches a figure of 18 to 24. The sample of bauxite ore coming from the grinding mill is tested for its particle size and composition. For testing the composition, the bauxite ore sample is first prepared by fusing it with X-ray flux. Then the sample is sent for X-ray fluorescence analysis. Afterwards, the crucibles are washed in ultrasonic baths to be used for the next testing. The whole procedure takes about 2 - 3 hours. With a large number of samples reaching the laboratory, the chances of error in composition analysis increase. In this study, we have used a composite sampling methodology to reduce the number of samples reaching the laboratory without compromising their validity. The results of the average composition of fifteen samples were measured against composite samples. The mean of difference was calculated. The standard deviation and paired t-test values were evaluated against predetermined critical values obtained using a two-tailed test. It was found from the results that paired test-t values were much lower than the critical values thus validating the composition attained through composite sampling. The composite sampling approach not only reduced the number of samples but also the chemicals used in the laboratory. The objective of improved analytical protocol to reduce the number of samples reaching the laboratory was successfully achieved without compromising the quality of analytical results.
文摘ORGANIC matters in the ore-forming fluids are composed mainly of light hydrocarbons. Because of the small amount of hydrocarbons in fluid inclusions, it is quite difficult to study their behavior in mineralizing processes, excepting methane (CH<sub>4</sub>). In this work, we used a high vacuum quadrupole gas massspectrometer system to determine the content and composition of light hydrocarbons (C<sub>1-7</sub>) in fluid inclusions in minerals collected from Changkeng Au-Ag deposit. The geological significance of the new data forgenesis of the deposit has been discussed briefly.
基金supported by the National Natural Science Foundation of China(21727812,21705016,21864001)the Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT)(IRT_17R20)Department of Science and Technology of Jiangxi Province(20192AEI91006)。
文摘At the beginning of rare earth industry,several days are normally required for characterization of rare earth elements(REEs)fractionation in ore samples.Herein,rapid fractionation analysis of 15 REEs and accompanied metal(Fe,Mn,etc.)in ore samples has been achieved within 1 h using ICP-MS with a homemade device for online sequential solvent extraction.As a result,five fractionations for REEs occurrences,i.e.,water soluble,exchangeable,reducible,oxidizable and crystalline,have been identified,offering chemical insights which not only reveal the formation mechanism of REEs ores but also show great implications for guiding the exploitation and separation of REEs.In comparison with conventional methods,the present approach significantly shortened the analysis time(1 h vs.~80 h)and reduced the sample consumption(1.0 mg vs.5.0 g)with high recovery(>95%),providing a useful platform for the rapid quantitative fractionation analysis of REEs in complexed samples such as ore and fossils.