为了快速有效地检测聚类的边界点,提出了网格梯度、边界网格的概念以及一种基于网格梯度的边界点检测算法(Boundary Points Detecting Based Gradient of Grid,BPGG),该算法先求出网格的梯度值,根据此值判断该网格是否为边界网格,进而...为了快速有效地检测聚类的边界点,提出了网格梯度、边界网格的概念以及一种基于网格梯度的边界点检测算法(Boundary Points Detecting Based Gradient of Grid,BPGG),该算法先求出网格的梯度值,根据此值判断该网格是否为边界网格,进而确定聚类边界点.实验表明该算法可以在含有任意形状、大规模数据集上快速有效地检测出聚类的边界点,并去除噪声.展开更多
为了解决源数据维数较大的问题,提出了一种基于非负矩阵分解(NMF)的同调机群识别方法。采用发电机角速度作为源数据,使用NMF算法对其进行降维。由于此低维矩阵具有非负性质,因而该模型在消除冗余数据、降低维数的同时,保留了原始问题的...为了解决源数据维数较大的问题,提出了一种基于非负矩阵分解(NMF)的同调机群识别方法。采用发电机角速度作为源数据,使用NMF算法对其进行降维。由于此低维矩阵具有非负性质,因而该模型在消除冗余数据、降低维数的同时,保留了原始问题的实际意义。对低维矩阵归一化,再利用K均值聚类算法对其进行聚类,达到同调机群的分群目的。通过New England 10机39节点系统比较了基于NMF和主成分分析方法的分群效果,验证了基于NMF的同调机群识别方法的有效性。展开更多
文摘为了快速有效地检测聚类的边界点,提出了网格梯度、边界网格的概念以及一种基于网格梯度的边界点检测算法(Boundary Points Detecting Based Gradient of Grid,BPGG),该算法先求出网格的梯度值,根据此值判断该网格是否为边界网格,进而确定聚类边界点.实验表明该算法可以在含有任意形状、大规模数据集上快速有效地检测出聚类的边界点,并去除噪声.
文摘为了解决源数据维数较大的问题,提出了一种基于非负矩阵分解(NMF)的同调机群识别方法。采用发电机角速度作为源数据,使用NMF算法对其进行降维。由于此低维矩阵具有非负性质,因而该模型在消除冗余数据、降低维数的同时,保留了原始问题的实际意义。对低维矩阵归一化,再利用K均值聚类算法对其进行聚类,达到同调机群的分群目的。通过New England 10机39节点系统比较了基于NMF和主成分分析方法的分群效果,验证了基于NMF的同调机群识别方法的有效性。