Single-ion conductors based on covalent organic frameworks(COFs)have garnered attention as a potential alternative to currently prevalent inorganic ion conductors owing to their structural uniqueness and chemical vers...Single-ion conductors based on covalent organic frameworks(COFs)have garnered attention as a potential alternative to currently prevalent inorganic ion conductors owing to their structural uniqueness and chemical versatility.However,the sluggish Li+conduction has hindered their practical applications.Here,we present a class of solvent-free COF single-ion conductors(Li-COF@P)based on weak ion-dipole interaction as opposed to traditional strong ion-ion interaction.The ion(Li+from the COF)-dipole(oxygen from poly(ethylene glycol)diacrylate embedded in the COF pores)interaction in the Li-COF@P promotes ion dissociation and Li+migration via directional ionic channels.Driven by this single-ion transport behavior,the Li-COF@P enables reversible Li plating/stripping on Li-metal electrodes and stable cycling performance(88.3%after 2000 cycles)in organic batteries(Li metal anode||5,5’-dimethyl-2,2’-bis-p-benzoquinone(Me2BBQ)cathode)under ambient operating conditions,highlighting the electrochemical viability of the Li-COF@P for all-solid-state organic batteries.展开更多
High-temperature superconducting(HTS)rare-earth Ba_(2)Cu_(3)O_(7-x)(REBCO)coated conductors(CCs)have significant potential in high-current and high-field applications.However,owing to the weak interface strength of th...High-temperature superconducting(HTS)rare-earth Ba_(2)Cu_(3)O_(7-x)(REBCO)coated conductors(CCs)have significant potential in high-current and high-field applications.However,owing to the weak interface strength of the laminated composite REBCO CCs,the damage induced by the thermal mismatch stress under a combination of epoxy impregnation,cooling,and quenching can cause premature degradation of the critical current.In this study,a three-dimensional(3D)electromagnetic-thermal-mechanical model based on the H-formulation and cohesive zone model(CZM)is developed to study the critical current degradation characteristics in an epoxy-impregnated REBCO CC caused by the damage during a quench.The temperature variation,critical current degradation of the REBCO CC,and its degradation onset temperature calculated by the numerical model are in agreement with the experimental data taken from the literature.The delamination of the REBCO CC predicted by the numerical model is consistent with the experimental result.The numerical results also indicate that the shear stress is the main contributor to the damage propagation inside the REBCO CC.The premature degradation of the critical current during a quench is closely related to the interface shear strength inside the REBCO CC.Finally,the effects of the coefficient of thermal expansion(CTE)of the epoxy resin,thickness of the substrate,and substrate material on the critical current degradation characteristics of the epoxy-impregnated REBCO CC during a quench are also discussed.These results help us understand the relationship between the current-carrying degradation and damage in the HTS applications.展开更多
The thermodynamic re-assessment of Au-Pt binary system was carried out by using the Calphad method and based on the recent experimental data. The Gibbs energies of face-centred cubic and liquid phases were described b...The thermodynamic re-assessment of Au-Pt binary system was carried out by using the Calphad method and based on the recent experimental data. The Gibbs energies of face-centred cubic and liquid phases were described by a sub-regular solution model with the Redlich-Kister equation. Much effort was taken to reproduce the phase equilibrium results and thermodynamic properties of the solid phase, including the activity and mixing enthalpy. The constraint of the third law of thermodynamics was also considered in the assessment. According to the presently assessed results, the miscibility gap region in the Au-Pt system slightly shifts to the Au-rich side, and the critical !0oint of the miscibility gap is about 1200 ℃ and Au-56% Pt.展开更多
This paper introduces the key laboratory on bundle conductors for high voltage overhead lines built byElectric Power Construction Research Institute under the State Power Corporation of China. It consists of 4 sub-lab...This paper introduces the key laboratory on bundle conductors for high voltage overhead lines built byElectric Power Construction Research Institute under the State Power Corporation of China. It consists of 4 sub-laboratories, namely the Aeolian Vibration Lab, Spacer Vibration Lab, Conductor Fatigue Lab and Conductor CreepageLab. The paper introduces also laboratory’s facilities, functions and some experimental results.[展开更多
In this paper the heat withstanding mechanism of heat-resisting aluminum alloy conductor is discussed, the types and performance of the conductor and its application on transmission lines are analyzed and introduced, ...In this paper the heat withstanding mechanism of heat-resisting aluminum alloy conductor is discussed, the types and performance of the conductor and its application on transmission lines are analyzed and introduced, and suggestions on accelerating exploitation and application of the conductor are put forward.展开更多
Organic conductor is a kind of organic compound which has special electronic and magnetic properties. The research of the organic compounds has received considerable attention because of their potential applications i...Organic conductor is a kind of organic compound which has special electronic and magnetic properties. The research of the organic compounds has received considerable attention because of their potential applications in many areas. The molecular conductive units are theoretically investigated as well as their energy gap and charge distribution. The relationship of conductivity and micro mechanism is discussed.展开更多
La9.335i6O26 oxygen ionic conductor was synthesized by solid state reaction method. Its structure was deter- mined by single-crystal X-ray diffraction analysis at room temperature. The results showed that La9.33Si6O26...La9.335i6O26 oxygen ionic conductor was synthesized by solid state reaction method. Its structure was deter- mined by single-crystal X-ray diffraction analysis at room temperature. The results showed that La9.33Si6O26 oxide has the apatite structure with space group P63/m. AC impedance measurements indicated that the oxides sintered in nitrogen have much higher conductivity than those sintered in air. The effects of grain boundaries on the conductivity were discussed.展开更多
In this paper, 1,2,4-triazolium methanesulfonate (C_2H_4N_3^+-CH_3SO_3^-, [Tri][MS]), an ionic conductor, was successfully synthesized. It exhibited high ionic conductivity of 18.60 mS·cm^-1 at 140 ℃ and reac...In this paper, 1,2,4-triazolium methanesulfonate (C_2H_4N_3^+-CH_3SO_3^-, [Tri][MS]), an ionic conductor, was successfully synthesized. It exhibited high ionic conductivity of 18.60 mS·cm^-1 at 140 ℃ and reached up to 36.51 mS·cm^-1 at 190 ℃. [Tri][MS] was first applied to modify Nation membrane to fabricate [Tri][MS]/Nafion membrane by impregnation method at 150 ℃. The prepared composite membrane showed high thermal stability with decomposed temperature above 200 ℃ in air atmosphere. In addition, the membrane indicated good ionic conductivity with 3.67 mS·cm^-1 at 140 ℃ and reached up to 13.23 mS·cm^-1 at 180 ℃. The structure of the [Tri][MS] and the composite membrane were characterized by FTIR and the compatibility of [Tri][MS] and Pt/C catalyst was studied by a cyclic voltammetry (CV) method. Besides, the [Tri][MS]/Nafion membrane (thickness of 65 μm) was evaluated with single fuel cell at high temperature and without humidification. The highest power density of [Tri][MS]/Nafion membrane was 3.20 mW·cm^-2 at 140 ℃ and 4.90 mW·cm^-2 at 150 ℃, which was much higher than that of Nation membrane.展开更多
Cable-in-conduit conductor (CICC) conductor sample of the PF2 coil for ITER was tested in the SULTAN facility. According to the test results, the CICC conductor sample exhibited a stable performance regarding the cu...Cable-in-conduit conductor (CICC) conductor sample of the PF2 coil for ITER was tested in the SULTAN facility. According to the test results, the CICC conductor sample exhibited a stable performance regarding the current sharing temperature. Under the typical operational conditions of a current of 45 kA, a magnetic field of 4 T and a temperature of 5 K for PF2, the test result for the conductor current sharing temperature is 6.71 K, with a temperature margin of 1.71 K. For a comparison thermal-hydraulic analysis of the PF2 conductor was carried out using GANDALF code in a 1-D model, and the result is consistent with the test one.展开更多
The central solenoid(CS)is one of the key components of the International Thermonuclear Experimental Reactor(ITER)tokamak and which is often considered as the heart of this fusion reactor.This solenoid will be bui...The central solenoid(CS)is one of the key components of the International Thermonuclear Experimental Reactor(ITER)tokamak and which is often considered as the heart of this fusion reactor.This solenoid will be built by using Nb3Sn cablein-conduit conductors(CICC),capable of generating a 13 T magnetic field.In order to assess the performance of the Nb3Sn CICC in nearly the ITER condition,many short samples have been evaluated at the SULTAN test facility(the background magnetic field is of 10.85 T with the uniform length of 400 mm at 1%homogeneity)in Centre de Recherches en Physique des Plasma(CRPP).It is found that the samples with pseudo-long twist pitch(including baseline specimens)show a significant degradation in the current-sharing temperature(Tcs),while the qualification tests of all short twist pitch(STP)samples,which show no degradation versus electromagnetic cycling,even exhibits an increase of Tcs.This behavior was perfectly reproduced in the coil experiments at the central solenoid model coil(CSMC)facility last year.In this paper,the complex structure of the Nb3Sn CICC would be simplified into a wire rope consisting of six petals and a cooling spiral.An analytical formula for the Tcs behavior as a function of the axial strain of the cable is presented.Based on this,the effects of twist pitch,axial and transverse stiffness,thermal mismatch,cycling number,magnetic distribution,etc.,on the axial strain are discussed systematically.The calculated Tcs behavior with cycle number show consistency with the previous experimental results qualitatively and quantitatively.Lastly,we focus on the relationship between Tcs and axial strain of the cable,and we conclude that the Tcs behavior caused by electromagnetic cycles is determined by the cable axial strain.Once the cable is in a compression situation,this compression strain and its accumulation would lead to the Tcs degradation.The experimental observation of the Tcs enhancement in the CS STP samples should be considered as a contribution of the shorter length of the high field zone in SULTAN and CSMC devices,as well as the tight cable structure.展开更多
In this paper, we present a magnetocardiogram (MCG) simulation study using the boundary element method (BEM) and based on the virtual heart model and the realistic human volume conductor model. The different contr...In this paper, we present a magnetocardiogram (MCG) simulation study using the boundary element method (BEM) and based on the virtual heart model and the realistic human volume conductor model. The different contributions of cardiac equivalent source models and volume conductor models to the MCG are deeply and comprehensively investigated. The single dipole source model, the multiple dipoles source model and the equivalent double layer (EDL) source model are analysed and compared with the cardiac equivalent source models. Meanwhile, the effect of the volume conductor model on the MCG combined with these cardiac equivalent sources is investigated. The simulation results demonstrate that the cardiac electrophysiological information will be partly missed when only the single dipole source is taken, while the EDL source is a good option for MCG simulation and the effect of the volume conductor is smallest for the EDL source. Therefore, the EDL source is suitable for the study of MCG forward and inverse problems, and more attention should be paid to it in future MCG studies.展开更多
The Au-Pt alloy nanoparticles(Au-PtNPs) were electrochemically deposited on the surface of polyaniline nanotube(nanoPAN) and chitosan(CS) modified glassy carbon electrode(GCE). The electrochemical behavior of ...The Au-Pt alloy nanoparticles(Au-PtNPs) were electrochemically deposited on the surface of polyaniline nanotube(nanoPAN) and chitosan(CS) modified glassy carbon electrode(GCE). The electrochemical behavior of lincomycin at Au-PtNPs/nanoPAN/CS modified GCE was investigated by cyclic voltammetry, linear sweep voltammetry and chronocoulometry. Cyclic voltammetric experiments show that lincomycin at the nanocomposite membrane modified electrode exhibited a pair of quasi-reversible redox peaks in pH=6.0 PBS. The membrane could accelerate the electron transfer of lincomycin on the electrode and significantly enhance the peak current. In a range of 3.0-100.0 mg/L, the reductive peak current of lincomycin at 0.42 V was linearly related to its concentration and the linear regression equation was ip,c=0.2703ρ-0.0042(ip, c: μA; ρ: mg/L; r=0.998, n=7) with a detection limit of 1.0 mg/L(S/N =3). Compared with other methods, this method exhibited many advantages such as high sensitivity, selectivity, wide linear range and low detection limit. The method was used to determine the content of lincomycin in injections commercially available with satisfactory results. Some electrochemical parameters involved in the redox reaction of lincomycin, such as parameter of kinetic ha, standard rate constant ks and the number of H^+, were also calculated.展开更多
On the basis of expounding the corrosion mechanism of the stator hollow copper conductor in the water-cooling generator, methods of preventing corrosion of the stator hollow copper conductor in the wa-ter-cooling gene...On the basis of expounding the corrosion mechanism of the stator hollow copper conductor in the water-cooling generator, methods of preventing corrosion of the stator hollow copper conductor in the wa-ter-cooling generator through adjusting water quality of its cooling water have been proposed. For internal water cooling systems which are airtight, the corrosion of the hollow copper conductor can be prevented through keeping foreign oxygen and carbon dioxide from entering the system, and the amount of oxygen in the internal water can be lowered by blowing high purity nitrogen. For systems not airtight, the corrosion of the hollow copper conductor can be inhibited through lowering the amount of oxygen to some extent by sealing and increasing pH value by processing part of cooling water with bypass small flow sodium-type mix-bed.展开更多
基金supported by the Basic Science Research Program (No.RS-2024-00344021) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and future Planningthe financial support from the National Natural Science Foundation of China (52103277)+2 种基金the Program for Science & Technology Innovation Talents in Universities of Henan Province (23HASTIT015)Natural Science Foundation of Henan Province (242300421073)supported by the Technology Innovation Program (20010960) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea)
文摘Single-ion conductors based on covalent organic frameworks(COFs)have garnered attention as a potential alternative to currently prevalent inorganic ion conductors owing to their structural uniqueness and chemical versatility.However,the sluggish Li+conduction has hindered their practical applications.Here,we present a class of solvent-free COF single-ion conductors(Li-COF@P)based on weak ion-dipole interaction as opposed to traditional strong ion-ion interaction.The ion(Li+from the COF)-dipole(oxygen from poly(ethylene glycol)diacrylate embedded in the COF pores)interaction in the Li-COF@P promotes ion dissociation and Li+migration via directional ionic channels.Driven by this single-ion transport behavior,the Li-COF@P enables reversible Li plating/stripping on Li-metal electrodes and stable cycling performance(88.3%after 2000 cycles)in organic batteries(Li metal anode||5,5’-dimethyl-2,2’-bis-p-benzoquinone(Me2BBQ)cathode)under ambient operating conditions,highlighting the electrochemical viability of the Li-COF@P for all-solid-state organic batteries.
基金Project supported by the National Natural Science Foundation of China(Nos.12302278,U2241267,12172155,and 11932008)the Fundamental Research Funds for the Central Universities of China(No.lzujbky-2022-48)the Natural Science Foundation of Gansu Province of China(No.24JRRA473)。
文摘High-temperature superconducting(HTS)rare-earth Ba_(2)Cu_(3)O_(7-x)(REBCO)coated conductors(CCs)have significant potential in high-current and high-field applications.However,owing to the weak interface strength of the laminated composite REBCO CCs,the damage induced by the thermal mismatch stress under a combination of epoxy impregnation,cooling,and quenching can cause premature degradation of the critical current.In this study,a three-dimensional(3D)electromagnetic-thermal-mechanical model based on the H-formulation and cohesive zone model(CZM)is developed to study the critical current degradation characteristics in an epoxy-impregnated REBCO CC caused by the damage during a quench.The temperature variation,critical current degradation of the REBCO CC,and its degradation onset temperature calculated by the numerical model are in agreement with the experimental data taken from the literature.The delamination of the REBCO CC predicted by the numerical model is consistent with the experimental result.The numerical results also indicate that the shear stress is the main contributor to the damage propagation inside the REBCO CC.The premature degradation of the critical current during a quench is closely related to the interface shear strength inside the REBCO CC.Finally,the effects of the coefficient of thermal expansion(CTE)of the epoxy resin,thickness of the substrate,and substrate material on the critical current degradation characteristics of the epoxy-impregnated REBCO CC during a quench are also discussed.These results help us understand the relationship between the current-carrying degradation and damage in the HTS applications.
基金Project (50871028) supported by the National Natural Science Foundation of ChinaProjects (N100702001,N090502002) supported by the Fundamental Research Funds for the Central Universities,China+1 种基金Project (NCET-09-0272) supported by the Program for New Century Excellent Talents in University of Ministry of Education, ChinaProject (200803) supported by Northeastern University Research Foundation for Doctor Candidates,China
文摘The thermodynamic re-assessment of Au-Pt binary system was carried out by using the Calphad method and based on the recent experimental data. The Gibbs energies of face-centred cubic and liquid phases were described by a sub-regular solution model with the Redlich-Kister equation. Much effort was taken to reproduce the phase equilibrium results and thermodynamic properties of the solid phase, including the activity and mixing enthalpy. The constraint of the third law of thermodynamics was also considered in the assessment. According to the presently assessed results, the miscibility gap region in the Au-Pt system slightly shifts to the Au-rich side, and the critical !0oint of the miscibility gap is about 1200 ℃ and Au-56% Pt.
文摘This paper introduces the key laboratory on bundle conductors for high voltage overhead lines built byElectric Power Construction Research Institute under the State Power Corporation of China. It consists of 4 sub-laboratories, namely the Aeolian Vibration Lab, Spacer Vibration Lab, Conductor Fatigue Lab and Conductor CreepageLab. The paper introduces also laboratory’s facilities, functions and some experimental results.[
文摘In this paper the heat withstanding mechanism of heat-resisting aluminum alloy conductor is discussed, the types and performance of the conductor and its application on transmission lines are analyzed and introduced, and suggestions on accelerating exploitation and application of the conductor are put forward.
文摘Organic conductor is a kind of organic compound which has special electronic and magnetic properties. The research of the organic compounds has received considerable attention because of their potential applications in many areas. The molecular conductive units are theoretically investigated as well as their energy gap and charge distribution. The relationship of conductivity and micro mechanism is discussed.
文摘La9.335i6O26 oxygen ionic conductor was synthesized by solid state reaction method. Its structure was deter- mined by single-crystal X-ray diffraction analysis at room temperature. The results showed that La9.33Si6O26 oxide has the apatite structure with space group P63/m. AC impedance measurements indicated that the oxides sintered in nitrogen have much higher conductivity than those sintered in air. The effects of grain boundaries on the conductivity were discussed.
基金financially supported by the National Basic Research Program of China(973 ProgramGrant 2012CB215504)the National Natural Science Foundation of China(21203191 and 21306190)
文摘In this paper, 1,2,4-triazolium methanesulfonate (C_2H_4N_3^+-CH_3SO_3^-, [Tri][MS]), an ionic conductor, was successfully synthesized. It exhibited high ionic conductivity of 18.60 mS·cm^-1 at 140 ℃ and reached up to 36.51 mS·cm^-1 at 190 ℃. [Tri][MS] was first applied to modify Nation membrane to fabricate [Tri][MS]/Nafion membrane by impregnation method at 150 ℃. The prepared composite membrane showed high thermal stability with decomposed temperature above 200 ℃ in air atmosphere. In addition, the membrane indicated good ionic conductivity with 3.67 mS·cm^-1 at 140 ℃ and reached up to 13.23 mS·cm^-1 at 180 ℃. The structure of the [Tri][MS] and the composite membrane were characterized by FTIR and the compatibility of [Tri][MS] and Pt/C catalyst was studied by a cyclic voltammetry (CV) method. Besides, the [Tri][MS]/Nafion membrane (thickness of 65 μm) was evaluated with single fuel cell at high temperature and without humidification. The highest power density of [Tri][MS]/Nafion membrane was 3.20 mW·cm^-2 at 140 ℃ and 4.90 mW·cm^-2 at 150 ℃, which was much higher than that of Nation membrane.
基金supported by the Priority Base Research Development Project of China (No. 0559730532)
文摘Cable-in-conduit conductor (CICC) conductor sample of the PF2 coil for ITER was tested in the SULTAN facility. According to the test results, the CICC conductor sample exhibited a stable performance regarding the current sharing temperature. Under the typical operational conditions of a current of 45 kA, a magnetic field of 4 T and a temperature of 5 K for PF2, the test result for the conductor current sharing temperature is 6.71 K, with a temperature margin of 1.71 K. For a comparison thermal-hydraulic analysis of the PF2 conductor was carried out using GANDALF code in a 1-D model, and the result is consistent with the test one.
基金supported by the National Natural Science Foundation of China(Grant 11622217)the National Key Project of Scientific Instrument and Equipment Development(Grant 11327802)supported by the Fundamental Research Funds for the Central Universities(Grants lzujbky-2017-ot18,lzujbky-2017-k18)
文摘The central solenoid(CS)is one of the key components of the International Thermonuclear Experimental Reactor(ITER)tokamak and which is often considered as the heart of this fusion reactor.This solenoid will be built by using Nb3Sn cablein-conduit conductors(CICC),capable of generating a 13 T magnetic field.In order to assess the performance of the Nb3Sn CICC in nearly the ITER condition,many short samples have been evaluated at the SULTAN test facility(the background magnetic field is of 10.85 T with the uniform length of 400 mm at 1%homogeneity)in Centre de Recherches en Physique des Plasma(CRPP).It is found that the samples with pseudo-long twist pitch(including baseline specimens)show a significant degradation in the current-sharing temperature(Tcs),while the qualification tests of all short twist pitch(STP)samples,which show no degradation versus electromagnetic cycling,even exhibits an increase of Tcs.This behavior was perfectly reproduced in the coil experiments at the central solenoid model coil(CSMC)facility last year.In this paper,the complex structure of the Nb3Sn CICC would be simplified into a wire rope consisting of six petals and a cooling spiral.An analytical formula for the Tcs behavior as a function of the axial strain of the cable is presented.Based on this,the effects of twist pitch,axial and transverse stiffness,thermal mismatch,cycling number,magnetic distribution,etc.,on the axial strain are discussed systematically.The calculated Tcs behavior with cycle number show consistency with the previous experimental results qualitatively and quantitatively.Lastly,we focus on the relationship between Tcs and axial strain of the cable,and we conclude that the Tcs behavior caused by electromagnetic cycles is determined by the cable axial strain.Once the cable is in a compression situation,this compression strain and its accumulation would lead to the Tcs degradation.The experimental observation of the Tcs enhancement in the CS STP samples should be considered as a contribution of the shorter length of the high field zone in SULTAN and CSMC devices,as well as the tight cable structure.
基金supported by the State Key Development Program for Basic Research of China (Grant Nos. 2007CB512100 and2006CB601007)the National Natural Science Foundation of China (Grant No. 10674006)+2 种基金the National High Technology Research and Development Program of China (Grant No. 2007AA03Z238)China Postdoctoral Science Foundation (Grant No. 20090461376)the Fundamental Research Funds for the Central Universities (Grant No. KYJD09001)
文摘In this paper, we present a magnetocardiogram (MCG) simulation study using the boundary element method (BEM) and based on the virtual heart model and the realistic human volume conductor model. The different contributions of cardiac equivalent source models and volume conductor models to the MCG are deeply and comprehensively investigated. The single dipole source model, the multiple dipoles source model and the equivalent double layer (EDL) source model are analysed and compared with the cardiac equivalent source models. Meanwhile, the effect of the volume conductor model on the MCG combined with these cardiac equivalent sources is investigated. The simulation results demonstrate that the cardiac electrophysiological information will be partly missed when only the single dipole source is taken, while the EDL source is a good option for MCG simulation and the effect of the volume conductor is smallest for the EDL source. Therefore, the EDL source is suitable for the study of MCG forward and inverse problems, and more attention should be paid to it in future MCG studies.
基金Supported by the National Natural Science Foundation of China(Nos.20635020 and 20805025)Doctorial Foundation of the Ministry of Education of China(No.20060426001) Doctorial Fund of Qingdao University of Science and Technology, China(No.0022278)
文摘The Au-Pt alloy nanoparticles(Au-PtNPs) were electrochemically deposited on the surface of polyaniline nanotube(nanoPAN) and chitosan(CS) modified glassy carbon electrode(GCE). The electrochemical behavior of lincomycin at Au-PtNPs/nanoPAN/CS modified GCE was investigated by cyclic voltammetry, linear sweep voltammetry and chronocoulometry. Cyclic voltammetric experiments show that lincomycin at the nanocomposite membrane modified electrode exhibited a pair of quasi-reversible redox peaks in pH=6.0 PBS. The membrane could accelerate the electron transfer of lincomycin on the electrode and significantly enhance the peak current. In a range of 3.0-100.0 mg/L, the reductive peak current of lincomycin at 0.42 V was linearly related to its concentration and the linear regression equation was ip,c=0.2703ρ-0.0042(ip, c: μA; ρ: mg/L; r=0.998, n=7) with a detection limit of 1.0 mg/L(S/N =3). Compared with other methods, this method exhibited many advantages such as high sensitivity, selectivity, wide linear range and low detection limit. The method was used to determine the content of lincomycin in injections commercially available with satisfactory results. Some electrochemical parameters involved in the redox reaction of lincomycin, such as parameter of kinetic ha, standard rate constant ks and the number of H^+, were also calculated.
文摘On the basis of expounding the corrosion mechanism of the stator hollow copper conductor in the water-cooling generator, methods of preventing corrosion of the stator hollow copper conductor in the wa-ter-cooling generator through adjusting water quality of its cooling water have been proposed. For internal water cooling systems which are airtight, the corrosion of the hollow copper conductor can be prevented through keeping foreign oxygen and carbon dioxide from entering the system, and the amount of oxygen in the internal water can be lowered by blowing high purity nitrogen. For systems not airtight, the corrosion of the hollow copper conductor can be inhibited through lowering the amount of oxygen to some extent by sealing and increasing pH value by processing part of cooling water with bypass small flow sodium-type mix-bed.