As a large family of 2D materials, transition metal dichalcogenides(TMDs) have stimulated numerous works owing to their attractive properties. The replacement of constituent elements could promote the discovery and fa...As a large family of 2D materials, transition metal dichalcogenides(TMDs) have stimulated numerous works owing to their attractive properties. The replacement of constituent elements could promote the discovery and fabrication of new nanofilm in this family. Using precious metals, such as platinum and palladium, to serve as transition metals combined with chalcogen is a new approach to explore novel TMDs. Also, the proportion between transition metal and chalcogen atoms is found not only to exist in conventional form of 1 : 2. Herein, we reported a comprehensive study of a new 2D precious metal selenide, namely AuSe monolayer. Based on density functional theory, our result indicated that AuSe monolayer is a semiconductor with indirect band-gap of 2.0 eV, which possesses superior dynamic stability and thermodynamic stability with cohesive energy up to–7.87 eV/atom. Moreover, it has been confirmed that ionic bonding predominates in Au–Se bonds and absorption peaks in all directions distribute in the deep ultraviolet region. In addition, both vibration modes dominating marked Raman peaks are parallel to the 2D plane.展开更多
Zinc (Zn) deficiency is a major soil constraint limiting rice crop growth and yield, yet the genetic control of tolerance mechanisms is still poorly understood. Here, we presented promising loci and candidate genes ...Zinc (Zn) deficiency is a major soil constraint limiting rice crop growth and yield, yet the genetic control of tolerance mechanisms is still poorly understood. Here, we presented promising loci and candidate genes conferring tolerance to Zn deficiency and identified through association analysis using a 365 K single nucleotide polymorphism (SNP) marker array in a diverse aus (semi-wild type rice) panel. Tolerant accessions exhibited higher growth rate with relatively rare stress symptoms. Two loci on chromosomes 7 and 9 were strongly associated with plant vigor under Zn deficiency at a peak-stress stage. Based on previous microarray data from the same experimental plots, we highlighted four candidate genes whose expressions were accompanied by significant genotype and/or environment effects under Zn deficiency. Network-gene ontology supported known tolerance mechanisms, such as ascorbic acid pathway, and also suggested the importance of photosynthesis genes to overcome Zn deficiency symptoms.展开更多
Most indigenous rice landraces are sensitive to photoperiod during short day seasons,and this sensitivity is more pronounced in indica than in japonica landraces.Attempts to identify photoperiod sensitive(PPS)cultivar...Most indigenous rice landraces are sensitive to photoperiod during short day seasons,and this sensitivity is more pronounced in indica than in japonica landraces.Attempts to identify photoperiod sensitive(PPS)cultivars based on the life history stages of the rice plant,and several models and indices based on phenology and day length have not been precise,and in some cases yield counterfactual inferences.Following the empirical method of traditional Asian rice farmers,the author has developed a robust index,based on the sowing and flowering dates of a large number of landraces grown in different seasons from 2020 to 2023,to contradistinguish PPS from photoperiod insensitive cultivars.Unlike other indices and models of photoperiod sensitivity,the index does not require the presumed duration of different life history stages of the rice plant but relies only on the flowering dates and the number of days till flowering of a rice cultivar sown on different dates to consistently identify photoperiod sensitive cultivars.展开更多
Weedy red rice(Oryza sativa;WRR),a close relative of cultivated rice,is a highly competitive weed that commonly infests rice fields and can also naturally interbreed with rice.Useful genes for biotic stress have been ...Weedy red rice(Oryza sativa;WRR),a close relative of cultivated rice,is a highly competitive weed that commonly infests rice fields and can also naturally interbreed with rice.Useful genes for biotic stress have been maintained in WRR and can be explored for breeding.Here we describe genetic and physiological traits of WRR that can be beneficial in preventing major rice diseases.Rice blast,caused by the hemibiotrophic fungal pathogen Magnaporthe oryzae,and sheath blight disease,caused by the necrotrophic pathogen Rhizoctonia solani,are the two most damaging biotic stresses of rice.Many major and minor resistance genes and QTL have been identified in cultivated and wild rice relatives.However,novel QTL were recently found in the two major U.S.biotypes of WRR,blackhull-awned(BH)and strawhullawnless(SH),suggesting that WRR has evolved novel genetic mechanisms to cope with these biotic stresses.Twenty-eight accessions of WRR(PI 653412–PI 653439)from the southern USA were characterized and placed in the National Small Grains Collection,and are available for identification of novel genetic factors to prevent biotic stress.展开更多
Electrochemical nitrate reduction reaction(NO_(3)RR)has great potential for ammonia(NH_(3))synthesis benefiting from its environmental friendliness and sustainability.Cu-based alloys with elemental diversity and adsor...Electrochemical nitrate reduction reaction(NO_(3)RR)has great potential for ammonia(NH_(3))synthesis benefiting from its environmental friendliness and sustainability.Cu-based alloys with elemental diversity and adsorption tunability are widely used as electrocatalyst to lower the reaction overpotential for NO_(3)RR catalysis.However,phase separation commonly found in alloys leads to uneven distribution of elements,which limits the possibility of further optimizing the catalytic activity.Herein,an electrotriggered Joule heating method,possessing unique superiority of flash heating and cooling that lead to well-dispersed nanoparticles and uniform mixing of various elements,was adopted to synthesize a single-phase CuNi nano-alloy catalyst evenly dispersed on carbon fiber paper,CFP-Cu_(1)Ni_(1),which exhibited a more positive NO_(3)RR initial potential of 0.1 V versus reversible hydrogen electrode(vs.RHE)than that of pure copper nanoparticles at 10 mA·cm^(−2)in 0.5 mol·L^(−1)Na_(2)SO_(4)+0.1 mol·L^(−1)KNO_(3)solution.Importantly,CFP-Cu_(1)Ni_(1) presented high electrocatalytic activity with a Faradaic efficiency of 95.7%and NH_(3)yield rate of 180.58μmol·h^(−1)·cm^(−2)(2550μmol·h^(−1)·mg_(cat)^(−1))at−0.22 V vs.RHE.Theoretical calculations showed that alloying Cu with Ni into single-phase caused an upshift of its d-band center,which promoted the adsorption of NO_(3)−and weakened the adsorption of NH_(3).Moreover,the competitive adsorption of hydrogen ions was restrained until−0.24 V.This work offers a rational design concept with clear guidance for rapid synthesis of uniformly dispersed single-phase nano-alloy catalyst for efficient electrochemical NO_(3)RR toward ammonia.展开更多
奥地利现代作曲家恩斯特.克热内克(Ernst Heinrich Krenek,19008-1991)的声乐套曲《游奥地利阿尔卑斯山组歌》(op.62)是其"新浪漫主义"创作成熟期的一部力作,分析其演唱风格和演唱处理,对演唱实践是重要的,也为今后现代声乐...奥地利现代作曲家恩斯特.克热内克(Ernst Heinrich Krenek,19008-1991)的声乐套曲《游奥地利阿尔卑斯山组歌》(op.62)是其"新浪漫主义"创作成熟期的一部力作,分析其演唱风格和演唱处理,对演唱实践是重要的,也为今后现代声乐作品的研究,提供参考。展开更多
基金financially supported by the Natural Science Foundation of Jiangsu Province(No.BK20180071)the Fundamental Research Funds for the Central Universities(No.30919011109)PAPD of Jiangsu Higher Education Institutions
文摘As a large family of 2D materials, transition metal dichalcogenides(TMDs) have stimulated numerous works owing to their attractive properties. The replacement of constituent elements could promote the discovery and fabrication of new nanofilm in this family. Using precious metals, such as platinum and palladium, to serve as transition metals combined with chalcogen is a new approach to explore novel TMDs. Also, the proportion between transition metal and chalcogen atoms is found not only to exist in conventional form of 1 : 2. Herein, we reported a comprehensive study of a new 2D precious metal selenide, namely AuSe monolayer. Based on density functional theory, our result indicated that AuSe monolayer is a semiconductor with indirect band-gap of 2.0 eV, which possesses superior dynamic stability and thermodynamic stability with cohesive energy up to–7.87 eV/atom. Moreover, it has been confirmed that ionic bonding predominates in Au–Se bonds and absorption peaks in all directions distribute in the deep ultraviolet region. In addition, both vibration modes dominating marked Raman peaks are parallel to the 2D plane.
基金funded by the SCPRID programme of BBSRC/DIFID/BMGF (BB/J011584/1) by International Rice Research Institute
文摘Zinc (Zn) deficiency is a major soil constraint limiting rice crop growth and yield, yet the genetic control of tolerance mechanisms is still poorly understood. Here, we presented promising loci and candidate genes conferring tolerance to Zn deficiency and identified through association analysis using a 365 K single nucleotide polymorphism (SNP) marker array in a diverse aus (semi-wild type rice) panel. Tolerant accessions exhibited higher growth rate with relatively rare stress symptoms. Two loci on chromosomes 7 and 9 were strongly associated with plant vigor under Zn deficiency at a peak-stress stage. Based on previous microarray data from the same experimental plots, we highlighted four candidate genes whose expressions were accompanied by significant genotype and/or environment effects under Zn deficiency. Network-gene ontology supported known tolerance mechanisms, such as ascorbic acid pathway, and also suggested the importance of photosynthesis genes to overcome Zn deficiency symptoms.
文摘Most indigenous rice landraces are sensitive to photoperiod during short day seasons,and this sensitivity is more pronounced in indica than in japonica landraces.Attempts to identify photoperiod sensitive(PPS)cultivars based on the life history stages of the rice plant,and several models and indices based on phenology and day length have not been precise,and in some cases yield counterfactual inferences.Following the empirical method of traditional Asian rice farmers,the author has developed a robust index,based on the sowing and flowering dates of a large number of landraces grown in different seasons from 2020 to 2023,to contradistinguish PPS from photoperiod insensitive cultivars.Unlike other indices and models of photoperiod sensitivity,the index does not require the presumed duration of different life history stages of the rice plant but relies only on the flowering dates and the number of days till flowering of a rice cultivar sown on different dates to consistently identify photoperiod sensitive cultivars.
文摘Weedy red rice(Oryza sativa;WRR),a close relative of cultivated rice,is a highly competitive weed that commonly infests rice fields and can also naturally interbreed with rice.Useful genes for biotic stress have been maintained in WRR and can be explored for breeding.Here we describe genetic and physiological traits of WRR that can be beneficial in preventing major rice diseases.Rice blast,caused by the hemibiotrophic fungal pathogen Magnaporthe oryzae,and sheath blight disease,caused by the necrotrophic pathogen Rhizoctonia solani,are the two most damaging biotic stresses of rice.Many major and minor resistance genes and QTL have been identified in cultivated and wild rice relatives.However,novel QTL were recently found in the two major U.S.biotypes of WRR,blackhull-awned(BH)and strawhullawnless(SH),suggesting that WRR has evolved novel genetic mechanisms to cope with these biotic stresses.Twenty-eight accessions of WRR(PI 653412–PI 653439)from the southern USA were characterized and placed in the National Small Grains Collection,and are available for identification of novel genetic factors to prevent biotic stress.
基金the National Natural Science Foundation of China(Nos.U1804255 and U22A20253)the Key Research&Development and Promotion Projects in Henan Province(Nos.222102520038 and 212102310060)。
文摘Electrochemical nitrate reduction reaction(NO_(3)RR)has great potential for ammonia(NH_(3))synthesis benefiting from its environmental friendliness and sustainability.Cu-based alloys with elemental diversity and adsorption tunability are widely used as electrocatalyst to lower the reaction overpotential for NO_(3)RR catalysis.However,phase separation commonly found in alloys leads to uneven distribution of elements,which limits the possibility of further optimizing the catalytic activity.Herein,an electrotriggered Joule heating method,possessing unique superiority of flash heating and cooling that lead to well-dispersed nanoparticles and uniform mixing of various elements,was adopted to synthesize a single-phase CuNi nano-alloy catalyst evenly dispersed on carbon fiber paper,CFP-Cu_(1)Ni_(1),which exhibited a more positive NO_(3)RR initial potential of 0.1 V versus reversible hydrogen electrode(vs.RHE)than that of pure copper nanoparticles at 10 mA·cm^(−2)in 0.5 mol·L^(−1)Na_(2)SO_(4)+0.1 mol·L^(−1)KNO_(3)solution.Importantly,CFP-Cu_(1)Ni_(1) presented high electrocatalytic activity with a Faradaic efficiency of 95.7%and NH_(3)yield rate of 180.58μmol·h^(−1)·cm^(−2)(2550μmol·h^(−1)·mg_(cat)^(−1))at−0.22 V vs.RHE.Theoretical calculations showed that alloying Cu with Ni into single-phase caused an upshift of its d-band center,which promoted the adsorption of NO_(3)−and weakened the adsorption of NH_(3).Moreover,the competitive adsorption of hydrogen ions was restrained until−0.24 V.This work offers a rational design concept with clear guidance for rapid synthesis of uniformly dispersed single-phase nano-alloy catalyst for efficient electrochemical NO_(3)RR toward ammonia.