期刊文献+
共找到963篇文章
< 1 2 49 >
每页显示 20 50 100
Application of Seasonal Auto-regressive Integrated Moving Average Model in Forecasting the Incidence of Hand-foot-mouth Disease in Wuhan,China 被引量:16
1
作者 彭颖 余滨 +3 位作者 汪鹏 孔德广 陈邦华 杨小兵 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2017年第6期842-848,共7页
Outbreaks of hand-foot-mouth disease(HFMD) have occurred many times and caused serious health burden in China since 2008. Application of modern information technology to prediction and early response can be helpful ... Outbreaks of hand-foot-mouth disease(HFMD) have occurred many times and caused serious health burden in China since 2008. Application of modern information technology to prediction and early response can be helpful for efficient HFMD prevention and control. A seasonal auto-regressive integrated moving average(ARIMA) model for time series analysis was designed in this study. Eighty-four-month(from January 2009 to December 2015) retrospective data obtained from the Chinese Information System for Disease Prevention and Control were subjected to ARIMA modeling. The coefficient of determination(R^2), normalized Bayesian Information Criterion(BIC) and Q-test P value were used to evaluate the goodness-of-fit of constructed models. Subsequently, the best-fitted ARIMA model was applied to predict the expected incidence of HFMD from January 2016 to December 2016. The best-fitted seasonal ARIMA model was identified as(1,0,1)(0,1,1)12, with the largest coefficient of determination(R^2=0.743) and lowest normalized BIC(BIC=3.645) value. The residuals of the model also showed non-significant autocorrelations(P_(Box-Ljung(Q))=0.299). The predictions by the optimum ARIMA model adequately captured the pattern in the data and exhibited two peaks of activity over the forecast interval, including a major peak during April to June, and again a light peak for September to November. The ARIMA model proposed in this study can forecast HFMD incidence trend effectively, which could provide useful support for future HFMD prevention and control in the study area. Besides, further observations should be added continually into the modeling data set, and parameters of the models should be adjusted accordingly. 展开更多
关键词 hand-foot-mouth disease forecast surveillance modeling auto-regressive integrated moving average(ARIMA)
下载PDF
A Study of Wind Statistics Through Auto-Regressive and Moving-Average (ARMA) Modeling 被引量:1
2
作者 John Z.YIM(尹彰) +1 位作者 ChunRen CHOU(周宗仁) 《China Ocean Engineering》 SCIE EI 2001年第1期61-72,共12页
Statistical properties of winds near the Taichung Harbour are investigated. The 26 years'incomplete data of wind speeds, measured on an hourly basis, are used as reference. The possibility of imputation using simu... Statistical properties of winds near the Taichung Harbour are investigated. The 26 years'incomplete data of wind speeds, measured on an hourly basis, are used as reference. The possibility of imputation using simulated results of the Auto-Regressive (AR), Moving-Average (MA), and/ or Auto-Regressive and Moving-Average (ARMA) models is studied. Predictions of the 25-year extreme wind speeds based upon the augmented data are compared with the original series. Based upon the results, predictions of the 50- and 100-year extreme wind speeds are then made. 展开更多
关键词 auto-regressive and Moving-Average (ARMA) modeling probability distributions extreme wind speeds
下载PDF
Parametric SNR Estimation Based on Auto-Regressive Model in AWGN Channels 被引量:1
3
作者 Dan-Ping Bai Qun Wan Xian-Sheng Guo Yan Wang 《Journal of Electronic Science and Technology of China》 2008年第1期21-24,共4页
Signal-to-noise ratio(SNR)estimation for signal which can be modeled by Auto-regressive(AR)process is studied in this paper.First,the conventional frequency domain method is introduced to estimate the SNR for the ... Signal-to-noise ratio(SNR)estimation for signal which can be modeled by Auto-regressive(AR)process is studied in this paper.First,the conventional frequency domain method is introduced to estimate the SNR for the received signal in additive white Gauss noise(AWGN)channel.Then a parametric SNR estimation algorithm is proposed by taking advantage of the AR model information of the received signal.The simulation results show that the proposed parametric method has better performance than the conventional frequency doma in method in case of AWGN channel. 展开更多
关键词 auto-regressive model AWGN channel model information SNR (Signal-to-noise ratio) estimation.
下载PDF
Auto-regressive模型在全国婴儿死亡率拟合中的应用 被引量:2
4
作者 刘松 李晓妹 +2 位作者 刘健 刘晓冬 李向云 《中国卫生统计》 CSCD 北大核心 2011年第4期366-368,共3页
目的分析我国1991~2007年的婴儿死亡率的变化规律,探讨Auto-regressive模型在非平稳时间序列数据拟合中的适用性和有效性。方法对我国婴儿死亡率数据序列的平稳性和纯随机性进行预处理,然后利用SAS程序拟合Auto-regressive模型,并根据... 目的分析我国1991~2007年的婴儿死亡率的变化规律,探讨Auto-regressive模型在非平稳时间序列数据拟合中的适用性和有效性。方法对我国婴儿死亡率数据序列的平稳性和纯随机性进行预处理,然后利用SAS程序拟合Auto-regressive模型,并根据决定系数R2评价其拟合效果。结果我国婴儿死亡率为非平稳时间序列,总体呈现随时间线性递减的长期趋势,同时又包含一定的随机信息,采用Auto-regressive模型拟合效果较好。结论 Auto-regressive模型可以用来拟合我国婴儿死亡率的数据,并可以推广应用到卫生领域中其他具有非平稳时间序列特征的数据,为相关卫生管理部门制定策略措施提供科学的理论依据。 展开更多
关键词 auto-regressive模型 婴儿死亡率 拟合
下载PDF
基于(残差)Auto-Regressive模型利用MATLAB解决经济非平稳时间序列的预测分析 被引量:2
5
作者 曾慧 郑彩萍 王涛涛 《佳木斯大学学报(自然科学版)》 CAS 2008年第1期71-74,共4页
利用(残差)Auto—Regressive模型对我国1978年—2005年的GDP进行建模与预测,显示出该拟合模型优于ARIMA模型,并运行MATLAB软件,实现了建模仿真的全过程,显示了MATLAB的强大科学计算与可视化功能.
关键词 (残差)auto-regressive 建模 预测 程序
下载PDF
Short Term Load Forecasting Using Subset Threshold Auto Regressive Model
6
作者 孙海健 《Journal of Southeast University(English Edition)》 EI CAS 1999年第2期78-83,共6页
The subset threshold auto regressive (SSTAR) model, which is capable of reproducing the limit cycle behavior of nonlinear time series, is introduced. The algorithm for fitting the sampled data with SSTAR model is pr... The subset threshold auto regressive (SSTAR) model, which is capable of reproducing the limit cycle behavior of nonlinear time series, is introduced. The algorithm for fitting the sampled data with SSTAR model is proposed and applied to model and forecast power load. Numerical example verifies that desirable accuracy of short term load forecasting can be achieved by using the SSTAR model. 展开更多
关键词 power load forecasting subset threshold auto regressive model
下载PDF
Parameter Estimation of Time-Varying ARMA Model 被引量:3
7
作者 王文华 韩力 王文星 《Journal of Beijing Institute of Technology》 EI CAS 2004年第2期131-134,共4页
The auto-regressive moving-average (ARMA) model with time-varying parameters is analyzed. The time-varying parameters are assumed to be a linear combination of a set of basis time-varying functions, and the feedbac... The auto-regressive moving-average (ARMA) model with time-varying parameters is analyzed. The time-varying parameters are assumed to be a linear combination of a set of basis time-varying functions, and the feedback linear estimation algorithm is used to estimate the time-varying parameters of the ARMA model. This algorithm includes 2 linear least squares estimations and a linear filter. The influence of the order of basis time-(varying) functions on parameters estimation is analyzed. The method has the advantage of simple, saving computation time and storage space. Theoretical analysis and experimental results show the validity of this method. 展开更多
关键词 auto-regressive moving-average (ARMA) model feedback linear estimation basis time-varying function spectral estimation
下载PDF
EXPERIMENTS WITH SHORT-TERM CLIMATE PREDICTION MODELS ON SSTA OVER THE NINO OCEANIC REGION 被引量:1
8
作者 丁裕国 江志红 朱艳峰 《Journal of Tropical Meteorology》 SCIE 1999年第1期1-8,共8页
Predictions of averaged SST monthly anomalous series for Nino 1-4 regions in the context of auto-adaptive filter are made using a model combining the singular spectrum analysis (SSA) and auto-regression (AR). The resu... Predictions of averaged SST monthly anomalous series for Nino 1-4 regions in the context of auto-adaptive filter are made using a model combining the singular spectrum analysis (SSA) and auto-regression (AR). The results have shown that the scheme is efticient in forward forecaning of the strong ENSO event in 1997- 1998, it is of high reliability in retrospective forecasting of three corresponding historical strong ENSO events. It is seen that the scheme has stable skill and large accuracy for experiments of both independent samples and real cases.With modifications, the SSA-AR scheme is expected to become an efficient model in routine predictions of ENSO. 展开更多
关键词 SINGULAR Spectrum Analysis ENSO EVENT CLIMATE prediction auto-regression model
下载PDF
Application of deep autoencoder model for structural condition monitoring
9
作者 PATHIRAGE Chathurdara Sri Nadith LI Jun +2 位作者 LI Ling HAO Hong LIU Wanquan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第4期873-880,共8页
Damage detection in structures is performed via vibra-tion based structural identification. Modal information, such as fre-quencies and mode shapes, are widely used for structural dama-ge detection to indicate the hea... Damage detection in structures is performed via vibra-tion based structural identification. Modal information, such as fre-quencies and mode shapes, are widely used for structural dama-ge detection to indicate the health conditions of civil structures.The deep learning algorithm that works on a multiple layer neuralnetwork model termed as deep autoencoder is proposed to learnthe relationship between the modal information and structural stiff-ness parameters. This is achieved via dimension reduction of themodal information feature and a non-linear regression against thestructural stiffness parameters. Numerical tests on a symmetri-cal steel frame model are conducted to generate the data for thetraining and validation, and to demonstrate the efficiency of theproposed approach for vibration based structural damage detec-tion. 展开更多
关键词 auto encoder non-linear regression deep auto en-coder model damage identification VIBRATION structural health monitoring
下载PDF
ARMA-GM combined forewarning model for the quality control
10
作者 WangXingyuan YangXu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第1期224-227,共4页
Three forecasting models are set up: the auto\|regressive moving average model, the grey forecasting model for the rate of qualified products P t, and the grey forecasting model for time intervals of the quality cata... Three forecasting models are set up: the auto\|regressive moving average model, the grey forecasting model for the rate of qualified products P t, and the grey forecasting model for time intervals of the quality catastrophes. Then a combined forewarning system for the quality of products is established, which contains three models, judgment rules and forewarning state illustration. Finally with an example of the practical production, this modeling system is proved fairly effective. 展开更多
关键词 auto-regressive moving average model (ARMA) grey system model (GM) combined forewarning model quality control.
下载PDF
基于VAR-LRTC-TNN的交通流量数据补全框架模型
11
作者 孙秋霞 王淇 +2 位作者 李勍 孙璐 贾秀燕 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第6期47-53,86,共8页
从各类传感系统收集到的交通流数据往往会因探测器或通信故障等缘故出现数据连续性的缺失,故准确补全缺失的交通流数据对制定合理的交通管理策略至关重要。鉴于交通流数据具有低秩的特性,通过低秩张量补全模型可较好地刻画出交通流数据... 从各类传感系统收集到的交通流数据往往会因探测器或通信故障等缘故出现数据连续性的缺失,故准确补全缺失的交通流数据对制定合理的交通管理策略至关重要。鉴于交通流数据具有低秩的特性,通过低秩张量补全模型可较好地刻画出交通流数据的全局一致性,但却无法很好地捕捉数据的局部变化趋势,一定程度上影响了效果。基于此,提出了将VAR模型和基于残差序列的LRTC-TNN模型相结合的交通流补全框架模型;采用VAR模型对缺失数据进行粗略估计,移除平均趋势,利用LRTC-TNN模型对残差时间序列进行补全,再将平均趋势还原,从而完成对交通流量数据的高精度补全;该方法不仅保留了交通流数据的全局结构,还考虑了数据局部变化的特征。研究结果表明:与基于原始交通流量数据的填充方法相比,该模型框架对单传感器和多传感器数据的连续性缺失均具有更高的补全精度。 展开更多
关键词 交通工程 智能交通 交通流量填充 向量自回归模型 张量补全 缺失数据
下载PDF
基于SSA-Hurst-ARIMA组合模型的船舶柴油发电机组故障特征短期预测
12
作者 梁清政 王浩 +2 位作者 程垠钟 杨天诣 姚钦博 《现代制造技术与装备》 2024年第2期51-54,共4页
为提高船舶柴油发电机组故障特征短期预测精度,建立基于奇异谱分析(Singular Spectrum Analysis,SSA)、Hurst指数、自回归移动平均(Auto-Regressive Integrated Moving Average,ARIMA)的组合预测模型。以某试验中船舶柴油发电机组运行... 为提高船舶柴油发电机组故障特征短期预测精度,建立基于奇异谱分析(Singular Spectrum Analysis,SSA)、Hurst指数、自回归移动平均(Auto-Regressive Integrated Moving Average,ARIMA)的组合预测模型。以某试验中船舶柴油发电机组运行数据为基础,选取增压器滑油压强数据,对比分析单一ARIMA模型、SSA主成分-ARIMA组合模型和SSA-Hurst-ARIMA组合模型的预测效果。结果表明,SSA-Hurst-ARIMA组合模型的预测效果优于单一ARIMA模型和SSA主成分-ARIMA组合模型,更适合应用于船舶柴油发电机组故障特征的短期预测。 展开更多
关键词 船舶柴油发电机组 故障特征 短期预测 奇异谱分析(SSA) HURST指数 自回归移动平均(ARIMA)模型
下载PDF
Auto-Regressive Models of Non-Stationary Time Series with Finite Length 被引量:7
13
作者 费万春 白伦 《Tsinghua Science and Technology》 SCIE EI CAS 2005年第2期162-168,共7页
To analyze and simulate non-stationary time series with finite length, the statistical characteris- tics and auto-regressive (AR) models of non-stationary time series with finite length are discussed and stud- ied. ... To analyze and simulate non-stationary time series with finite length, the statistical characteris- tics and auto-regressive (AR) models of non-stationary time series with finite length are discussed and stud- ied. A new AR model called the time varying parameter AR model is proposed for solution of non-stationary time series with finite length. The auto-covariances of time series simulated by means of several AR models are analyzed. The result shows that the new AR model can be used to simulate and generate a new time series with the auto-covariance same as the original time series. The size curves of cocoon filaments re- garded as non-stationary time series with finite length are experimentally simulated. The simulation results are significantly better than those obtained so far, and illustrate the availability of the time varying parameter AR model. The results are useful for analyzing and simulating non-stationary time series with finite length. 展开更多
关键词 time series analysis auto-covariance NON-STATIONARY auto-regressive model size curve of cocoon filament
原文传递
A novel approach to equipment health management based on auto-regressive hidden semi-Markov model(AR-HSMM) 被引量:5
14
作者 DONG Ming 《Science in China(Series F)》 2008年第9期1291-1304,共14页
As a new maintenance method, CBM (condition based maintenance) is becoming more and more important for the health management of complicated and costly equipment. A prerequisite to widespread deployment of CBM techno... As a new maintenance method, CBM (condition based maintenance) is becoming more and more important for the health management of complicated and costly equipment. A prerequisite to widespread deployment of CBM technology and prac- tice in industry is effective diagnostics and prognostics. Recently, a pattern recog- nition technique called HMM (hidden Markov model) was widely used in many fields. However, due to some unrealistic assumptions, diagnositic results from HMM were not so good, and it was difficult to use HMM directly for prognosis. By relaxing the unrealistic assumptions in HMM, this paper presents a novel approach to equip- ment health management based on auto-regressive hidden semi-Markov model (AR-HSMM). Compared with HMM, AR-HSMM has three advantages: 1) It allows explicitly modeling the time duration of the hidden states and therefore is capable of prognosis. 2) It can relax observations' independence assumption by accom- modating a link between consecutive observations. 3) It does not follow the unre- alistic Markov chain's memoryless assumption and therefore provides more pow- erful modeling and analysis capability for real problems. To facilitate the computa- tion in the proposed AR-HSMM-based diagnostics and prognostics, new forward- backward variables are defined and a modified forward-backward algorithm is de- veloped. The evaluation of the proposed methodology was carried out through a real world application case study: health diagnosis and prognosis of hydraulic pumps in Caterpillar Inc. The testing results show that the proposed new approach based on AR-HSMM is effective and can provide useful support for the decision- making in equipment health management. 展开更多
关键词 auto-regressive hidden semi-Markov model DIAGNOSIS PROGNOSIS Markov model
原文传递
China's Energy Consumption Forecasting by GMDH Based Auto-Regressive Model 被引量:3
15
作者 XIE Ling XIAO Jin +2 位作者 HU Yi ZHAO Hengjun XIAO Yi 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2017年第6期1332-1349,共18页
It is very significant for us to predict future energy consumption accurately. As for China's energy consumption annual time series, the sample size is relatively small. This paper combines the traditional auto-re... It is very significant for us to predict future energy consumption accurately. As for China's energy consumption annual time series, the sample size is relatively small. This paper combines the traditional auto-regressive model with group method of data handling(GMDH) suitable for small sample prediction, and proposes a novel GMDH based auto-regressive(GAR) model. This model can finish the modeling process in self-organized manner, including finding the optimal complexity model, determining the optimal auto-regressive order and estimating model parameters. Further, four different external criteria are proposed and the corresponding four GAR models are constructed. The authors conduct empirical analysis on three energy consumption time series, including the total energy consumption, the total petroleum consumption and the total gas consumption. The results show that AS-GAR model has the best forecasting performance among the four GAR models, and it outperforms ARIMA model, BP neural network model, support vector regression model and GM(1, 1) model.Finally, the authors give the out of sample prediction of China's energy consumption from 2014 to 2020 by AS-GAR model. 展开更多
关键词 auto-regressive model energy demand prediction GMDH small sample forecasting
原文传递
Time-varying parameter auto-regressive models for autocovariance nonstationary time series 被引量:2
16
作者 FEI WanChun BAI Lun 《Science China Mathematics》 SCIE 2009年第3期577-584,共8页
In this paper, autocovariance nonstationary time series is clearly defined on a family of time series. We propose three types of TVPAR (time-varying parameter auto-regressive) models: the full order TVPAR model, the t... In this paper, autocovariance nonstationary time series is clearly defined on a family of time series. We propose three types of TVPAR (time-varying parameter auto-regressive) models: the full order TVPAR model, the time-unvarying order TVPAR model and the time-varying order TV-PAR model for autocovariance nonstationary time series. Related minimum AIC (Akaike information criterion) estimations are carried out. 展开更多
关键词 autocovariance nonstationary time series time-varying parameter time-varying order auto-regressive model minimum AIC estimation 37M10 68Q10
原文传递
LS-SVM回归算法在刀具磨损量预测中的应用 被引量:23
17
作者 关山 闫丽红 彭昶 《中国机械工程》 EI CAS CSCD 北大核心 2015年第2期217-222,共6页
提出了基于最小二乘支持向量机回归算法的刀具磨损量预测方法。该方法首先利用经验模态分解算法对非线性、非平稳的声发射信号进行平稳化处理,得到了若干个固有模态函数;然后建立了每个固有模态函数的自回归模型,并提取模型系数构造特... 提出了基于最小二乘支持向量机回归算法的刀具磨损量预测方法。该方法首先利用经验模态分解算法对非线性、非平稳的声发射信号进行平稳化处理,得到了若干个固有模态函数;然后建立了每个固有模态函数的自回归模型,并提取模型系数构造特征向量;最后采用最小二乘支持向量机回归算法实现了刀具磨损量的预测。该方法与神经网络预测算法相比,具有更高的预测准确率,可有效预测当前切削状态下10s后的刀具磨损量。 展开更多
关键词 刀具磨损量预测 最小二乘支持向量机 经验模态分解 自回归模型
下载PDF
基于异方差检验的水文过程隐含周期分析模型及其应用--Ⅰ:模型 被引量:14
18
作者 王红瑞 林欣 +1 位作者 钱龙霞 张淑梅 《水利学报》 EI CSCD 北大核心 2008年第11期1183-1189,共7页
本文在讨论水文时序平稳性和异方差性的基础上,提出了检测水文时序隐含周期的模型,即对水文时序设计对数变换序列,提高序列的平稳性;建立相应的自回归模型降低残差的异方差性;通过对所得平稳序列进行周期图分析确定可能的主周期分量。... 本文在讨论水文时序平稳性和异方差性的基础上,提出了检测水文时序隐含周期的模型,即对水文时序设计对数变换序列,提高序列的平稳性;建立相应的自回归模型降低残差的异方差性;通过对所得平稳序列进行周期图分析确定可能的主周期分量。针对水文时序的特性提出包括具有确定频率的正弦项存在性检验、具有确定整数周期的非正弦周期项存在性检验和非确定频率的隐含周期性检验(Fisher检验)三种检验方式,可择其中一种确定主周期的显著水平。采用该模型可以解决利用自相关函数判断序列周期性所不能解决的问题,可进一步挖掘数据隐含的、深层次信息。最后,本文还编制了水文时序隐含周期的计算流程。在理论上,该模型不仅解决了隐含周期的检测问题,对于有确定周期的序列亦适用。 展开更多
关键词 水文时序 自回归模型 异方差 隐含周期 平稳性
下载PDF
基于小波包-AR谱的变速器轴承故障特征提取 被引量:13
19
作者 张玲玲 赵懿冠 +3 位作者 肖云魁 骆诗定 廖红云 潘全先 《振动.测试与诊断》 EI CSCD 北大核心 2011年第4期492-495,537,共4页
提出了一种小波包-AR谱估计和计算散度相结合的汽车变速器轴承故障特征提取方法。将6种不同磨损状况下的变速器轴承振动信号进行小波包分解,重构各频段信号并进行自回归(auto regressive,简称AR)谱估计,最后计算各故障轴承到新轴承之间... 提出了一种小波包-AR谱估计和计算散度相结合的汽车变速器轴承故障特征提取方法。将6种不同磨损状况下的变速器轴承振动信号进行小波包分解,重构各频段信号并进行自回归(auto regressive,简称AR)谱估计,最后计算各故障轴承到新轴承之间的散度值。试验结果表明,不论是轴承的轴向间隙,还是径向间隙差异及疲劳剥落,在小波包-AR谱的谱图上均有明显的反映,该方法可以有效提取出汽车变速器轴承振动信号中的故障特征。 展开更多
关键词 小波包 AR谱 变速器轴承 故障特征提取
下载PDF
应用EMD-AR谱提取柴油机曲轴轴承故障特征 被引量:14
20
作者 夏天 王新晴 +1 位作者 肖云魁 梁升 《振动.测试与诊断》 EI CSCD 北大核心 2010年第3期318-321,共4页
提出了一种基于经验模式分解(EMD)和AR(auto regressive)谱技术相结合的曲轴轴承磨损故障诊断的新方法。利用EMD方法分解发动机非稳态加速振动信号,得到一系列平稳的本征模式函数(IMF)分量,对占信号能量主要部分的前5阶IMF分量进行AR谱... 提出了一种基于经验模式分解(EMD)和AR(auto regressive)谱技术相结合的曲轴轴承磨损故障诊断的新方法。利用EMD方法分解发动机非稳态加速振动信号,得到一系列平稳的本征模式函数(IMF)分量,对占信号能量主要部分的前5阶IMF分量进行AR谱估计,分析各IMF分量的AR谱频带能量,提取能够反映曲轴轴承磨损故障的IMF分量的AR谱频带能量作为故障特征参数。试验时设置6组不同的振动传感器放置部位和4组不同的采集器触发转速,并利用本文提出的方法分析采集到的发动机非稳态振动信号。分析结果表明,基于EMD及AR谱技术提取得到的故障特征能够准确反映曲轴轴承的磨损状态,且当发动机转速高于1300 r/min,传感器放置于缸体与油底结合部右侧时,提取的故障特征最明显。 展开更多
关键词 经验模式分解 柴油发动机 故障诊断 曲轴轴承 AR谱
下载PDF
上一页 1 2 49 下一页 到第
使用帮助 返回顶部