期刊文献+
共找到669篇文章
< 1 2 34 >
每页显示 20 50 100
基于NVAE和OB-Mix的小样本数据增强方法 被引量:1
1
作者 杨玮 钟名锋 +3 位作者 杨根 侯至丞 王卫军 袁海 《计算机工程与应用》 CSCD 北大核心 2024年第2期103-112,共10页
由于深度学习模型对海量标注数据的依赖性较高,导致目前许多前沿性目标检测理论难以适用于工业检测领域。为此,提出一种基于NVAE图像生成和OB-Mix数据增强的小样本数据扩充方法。具体方法是通过NVAE构建检测目标的数据分布模型,再通过... 由于深度学习模型对海量标注数据的依赖性较高,导致目前许多前沿性目标检测理论难以适用于工业检测领域。为此,提出一种基于NVAE图像生成和OB-Mix数据增强的小样本数据扩充方法。具体方法是通过NVAE构建检测目标的数据分布模型,再通过采样潜变量的方式生成与真实目标图像属于同一分布的全新目标图像。在得到生成目标图像后,提出了OB-Mix数据增强策略,将生成目标图像与背景图像进行随机位置融合以构建出新的图像数据,从而提高网络的定位能力及泛化能力。方法在仅使用474张标注图像以及400张无检测目标的背景图像情况下,使YOLOv5的检测精确率达到95.86%,相比于不使用该方法的结果提高了17.60个百分点。 展开更多
关键词 数据增强 小样本 数据生成 新派变分自编码器(NVAE) 表面缺陷检测 深度学习
下载PDF
基于分割点改进孤立森林的网络入侵检测方法
2
作者 余长宏 许孔豪 +1 位作者 张泽 高明 《计算机工程》 CAS CSCD 北大核心 2024年第6期148-156,共9页
随着网络攻击的不断增多和日益复杂化,传统基于监督的网络入侵检测算法不能准确识别没有类别标记或特征不明显的网络访问链接,而对于无监督的网络入侵检测算法,也存在检测效率和准确率低等问题。针对如何进一步提升网络入侵检测性能,提... 随着网络攻击的不断增多和日益复杂化,传统基于监督的网络入侵检测算法不能准确识别没有类别标记或特征不明显的网络访问链接,而对于无监督的网络入侵检测算法,也存在检测效率和准确率低等问题。针对如何进一步提升网络入侵检测性能,提出使用自编码器(AE)与分割点改进孤立森林模型对网络入侵进行检测。首先,对无监督自编码器进行L1正则化,以增强自编码器的稀疏性,通过学习数据内在结构,自适应地提取具有判别性的特征,完成入侵攻击的特征提取;然后,使用改进的孤立森林分离异常点,即使用最大化均值与标准差之商来确定分割点划分最佳超平面来构建隔离树,使隔离树在相关子空间中具有更强隔离异常值的能力,并通过遍历所有隔离树中数据点的平均路径长度得到异常得分来判定异常流量。在KDDCUP99和UNSW-NB15数据集上的实验结果表明,与6种传统无监督方法相比,该方法较传统孤立森林准确率和召回率均提升约20%,F1值和曲线下面积(AUC)值均提升约10%,较其他无监督方法相比大幅降低了误码率。 展开更多
关键词 网络入侵检测 稀疏自编码器 孤立森林 无监督学习 隔离树
下载PDF
轴类零件的外圆自动光学检测方法设计与装置优化
3
作者 蒋仲仁 《浙江国际海运职业技术学院学报》 2024年第1期1-4,共4页
本文针对轴类零件的外圆测量装置,利用光学测量原理,提出了轴类零件直径误差、外圆圆度误差、直线度误差等误差测量和计算的方法,并设计了装置的结构。对装置的测量误差做出分析,并提出了优化措施。
关键词 外圆检测 自动化 光学 误差分析
下载PDF
基于深度学习的电力工程数据异常检测模型设计
4
作者 王斌 房向阳 +1 位作者 毛华 孙岳 《电子设计工程》 2024年第2期111-115,共5页
针对当前电力工程数据质量较差的问题,文中开展了基于深度学习的电力工程数据异常检测模型设计研究。提出了局部密度因子的改进方案,设计了一种基于深度自编码器(DAE)与高斯过程回归(GPR)的电力异常数据检测算法。该算法利用DAE模型实... 针对当前电力工程数据质量较差的问题,文中开展了基于深度学习的电力工程数据异常检测模型设计研究。提出了局部密度因子的改进方案,设计了一种基于深度自编码器(DAE)与高斯过程回归(GPR)的电力异常数据检测算法。该算法利用DAE模型实现了电力工程数据的重构,且将改进的局部密度因子、编码器输出数据及重构误差等作为GPR模型的输入,进而完成对异常数据的精准检测。仿真算例结果表明,与DAE、AE算法相比,所提算法的准确率可达89.2%,且稳定性更强。同时在实际应用中还可发现,通过加强对工程量及费用类型数据的校核管控,能够有效提升电力工程数据的质量,从而为电网的精细化运营提供数据基础。 展开更多
关键词 深度学习 异常检测 高斯过程回归 深度自编码器
下载PDF
基于注意力机制的无监督异常声音检测方法
5
作者 王超 李敬兆 张金伟 《兰州工业学院学报》 2024年第1期1-5,共5页
针对传统的基于自编码器的无监督异常声音检测方法存在特征表达能力不足的问题,提出一种基于注意力-跳跃自编码器-生成对抗网络的无监督异常声音检测方法ASAE-GAN(Attentional Skip-connected Auto Encoder and Generative Adversarial ... 针对传统的基于自编码器的无监督异常声音检测方法存在特征表达能力不足的问题,提出一种基于注意力-跳跃自编码器-生成对抗网络的无监督异常声音检测方法ASAE-GAN(Attentional Skip-connected Auto Encoder and Generative Adversarial Network)。ASAE-GAN在跳跃自编码器和生成对抗网络的基础上,引入通道间注意力机制和时间注意力机制,增强模型的特征表达能力。使用MIMII数据集中的pump声音数据进行实验,评价指标使用AUC分数。结果表明:ASAE-GAN的平均AUC分数相比较于AE、UNET和Skip-GANomaly分别提升了16.27%、14.23%和6.55%,验证了其在无监督异常声音检测方面的优越性。 展开更多
关键词 自编码器 无监督 异常声音检测 生成对抗网络 注意力机制
下载PDF
基于特征提取和最优加权集成策略的风机叶片结冰故障检测
6
作者 孙坚 杨宇兵 《科学技术与工程》 北大核心 2024年第11期4501-4509,共9页
针对风机叶片结冰检测中现有集成方法不能充分发挥不同个体分类器优势的问题,提出了一种基于特征提取和最优加权集成学习的叶片结冰检测模型。首先,用堆叠降噪自动编码器提取结冰关联特征后,考虑不同单一分类器在二分类应用中的表现及... 针对风机叶片结冰检测中现有集成方法不能充分发挥不同个体分类器优势的问题,提出了一种基于特征提取和最优加权集成学习的叶片结冰检测模型。首先,用堆叠降噪自动编码器提取结冰关联特征后,考虑不同单一分类器在二分类应用中的表现及其差异,选择随机森林、极限梯度提升树、轻量梯度提升机、K-近邻算法作为个体学习器,并用贝叶斯算法对其进行超参数优化。然后提出基于序列二次规划的最优加权集成策略对叶片状态进行判别。最后利用金风科技提供的15号和21号风机的历史数据进行了仿真实验,结果表明:所提出的检测模型与个体学习器及其他集成模型相比多项指标均有所提升,准确度达到了99.2%,在结冰检测方面具有一定的有效性。 展开更多
关键词 结冰检测 堆叠降噪自动编码器 贝叶斯优化 序列二次规划 最优加权集成
下载PDF
面向电力设备异常检测的深度自编码支持向量数据描述模型研究
7
作者 耿波 潘曙辉 董晓旭 《湖南电力》 2024年第1期119-127,共9页
针对深度自编码支持向量数据描述模型对电力设备部分异常区分能力不足的问题,提出自监督混合专家增强的深度自编码支持向量数据描述模型,构造多种自监督变换数据集模拟潜在未知异常,引入自监督分类和掩码重构任务以学习更具区分性的表... 针对深度自编码支持向量数据描述模型对电力设备部分异常区分能力不足的问题,提出自监督混合专家增强的深度自编码支持向量数据描述模型,构造多种自监督变换数据集模拟潜在未知异常,引入自监督分类和掩码重构任务以学习更具区分性的表示。此外,将编码器部分改造为混合专家模型结构,将数据分配给不同专家子模块进行专业化的学习,使异常决策边界更清晰。在4个公开数据集和3个电厂设备数据集上的实验结果证实了自监督学习和混合专家模型的有效性。 展开更多
关键词 异常检测 深度自编码支持向量数据描述 自监督学习 混合专家模型
下载PDF
一种多层多模态融合3D目标检测方法
8
作者 周治国 马文浩 《电子学报》 EI CAS CSCD 北大核心 2024年第3期696-708,共13页
在自动驾驶感知系统中视觉传感器与激光雷达是关键的信息来源,但在目前的3D目标检测任务中大部分纯点云的网络检测能力都优于图像和激光点云融合的网络,现有的研究将其原因总结为图像与雷达信息的视角错位以及异构特征难以匹配,单阶段... 在自动驾驶感知系统中视觉传感器与激光雷达是关键的信息来源,但在目前的3D目标检测任务中大部分纯点云的网络检测能力都优于图像和激光点云融合的网络,现有的研究将其原因总结为图像与雷达信息的视角错位以及异构特征难以匹配,单阶段融合算法难以充分融合二者的特征.为此,本文提出一种新的多层多模态融合的3D目标检测方法:首先,前融合阶段通过在2D检测框形成的锥视区内对点云进行局部顺序的色彩信息(Red Green Blue,RGB)涂抹编码;然后将编码后点云输入融合了自注意力机制上下文感知的通道扩充PointPillars检测网络;后融合阶段将2D候选框与3D候选框在非极大抑制之前编码为两组稀疏张量,利用相机激光雷达对象候选融合网络得出最终的3D目标检测结果.在KITTI数据集上进行的实验表明,本融合检测方法相较于纯点云网络的基线上有了显著的性能提升,平均mAP提高了6.24%. 展开更多
关键词 自动驾驶 多传感器融合 3D目标检测 点云编码 自注意力机制
下载PDF
基于动态规整与改进变分自编码器的异常电池在线检测方法 被引量:1
9
作者 郭铁峰 贺建军 +2 位作者 申帅 王翔 张彬汉 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第2期738-747,共10页
针对电池生产成组过程中,传统异常检测方法对混入的容量及压差异常电池检测精度低及生产结束后离线异常检测方法效率低等问题,该文提出一种集合长短期记忆变分自编码器与动态时间规整评价的锂电池异常在线检测方法(VAE-LSTM-DTW),实现... 针对电池生产成组过程中,传统异常检测方法对混入的容量及压差异常电池检测精度低及生产结束后离线异常检测方法效率低等问题,该文提出一种集合长短期记忆变分自编码器与动态时间规整评价的锂电池异常在线检测方法(VAE-LSTM-DTW),实现了异常电池的在线检测,避免了离线异常检测所造成的时间和能源的浪费。该方法首先将长短期记忆网络(LSTM)引入变分自编码器(VAE)模型,训练电池时序数据重构模型;其次,在电池异常检测的度量标准中引入动态时间规整值(DTW),并基于贝叶斯寻优获得最优检测阈值,对每个单体电池重构数据的动态规整值进行异常辨别。实验结果表明,相较该领域传统异常检测方法,VAE-LSTM-DTW模型性能优越,查准率和F1值都得到了较大的提升,具有较高的有效性和实用性。 展开更多
关键词 锂电池 异常检测 变分自编码器 动态时间规整 长短期记忆网络 贝叶斯优化
下载PDF
矿浆浓度自动检测技术研究进展
10
作者 曾理 黄宋魏 +1 位作者 田妞 赵凯 《化工自动化及仪表》 CAS 2024年第2期152-158,共7页
介绍目前最常用的矿浆浓度检测技术——超声波法、谐振法、射线法和称重法,阐述其结构组成、工作原理、技术特点、实际应用情况以及各自的优、缺点,重点介绍重力式矿浆浓度检测技术及其应用情况。最后,给出矿浆浓度检测仪表的应用选型建... 介绍目前最常用的矿浆浓度检测技术——超声波法、谐振法、射线法和称重法,阐述其结构组成、工作原理、技术特点、实际应用情况以及各自的优、缺点,重点介绍重力式矿浆浓度检测技术及其应用情况。最后,给出矿浆浓度检测仪表的应用选型建议,指出了矿浆浓度检测技术的未来发展趋势。 展开更多
关键词 自动检测 矿浆浓度 重力式检测法 超声波法 谐振法 射线法
下载PDF
基于声学特征与自编码器的机械故障检测方法
11
作者 张锦豪 赵月爱 《计算机与数字工程》 2024年第2期512-520,共9页
为解决工业中检测机械故障只有少量或没有故障数据时,检测难度大,精确度不高的问题,提出一种基于融合声学特征和自编码器的机械设备故障检测方法。首先将自编码器的潜在特征表示设置为8个,优化网络结构。然后使用MSE作为其重构误差函数... 为解决工业中检测机械故障只有少量或没有故障数据时,检测难度大,精确度不高的问题,提出一种基于融合声学特征和自编码器的机械设备故障检测方法。首先将自编码器的潜在特征表示设置为8个,优化网络结构。然后使用MSE作为其重构误差函数。最后分别把MFCC和MAF作为输入特征向量。结果表明,论文提出的方法与BS相比,在减少训练次数的同时,平均AUC和平均pAUC均有所提升,能够较好地完成故障检测任务。 展开更多
关键词 声学特征 自编码器 故障检测
下载PDF
基于分层潜在语义驱动网络的事件检测
12
作者 肖梦南 贺瑞芳 马劲松 《计算机研究与发展》 EI CSCD 北大核心 2024年第1期184-195,共12页
事件检测旨在检测句子中的触发词并将其分类为预定义的事件类型.如何有效地表示触发词是实现该任务的核心要素.目前基于表示的方法通过复杂的深度神经网络来学习候选触发词的语义表示,以提升模型性能.然而,其忽略了2个问题:1)受句子语... 事件检测旨在检测句子中的触发词并将其分类为预定义的事件类型.如何有效地表示触发词是实现该任务的核心要素.目前基于表示的方法通过复杂的深度神经网络来学习候选触发词的语义表示,以提升模型性能.然而,其忽略了2个问题:1)受句子语境的影响,同一个触发词会触发不同的事件类型;2)受自然语言表达多样性的影响,不同的触发词会触发同一个事件类型.受变分自编码器中隐变量及其他自然语言处理(natural language processing,NLP)任务中分层结构的启发,提出基于分层潜在语义驱动网络(hierarchical latent semantic-driven network,HLSD)的事件检测方法,通过句子和单词的潜在语义信息来辅助缓解以上2个问题.模型从文本表示空间中分层降维到新的潜在语义空间,探索事件宏微观语境中更本质的影响信息.首先,通过BERT对候选句子进行编码,得到句子的表示和句子中单词的表示;其次,设计一个双重的潜在语义机制,并采用VAE挖掘句子和单词级潜在语义;最后,从不同粒度的上下文角度,提出采用一个由粗到细的分层结构来充分使用句子和单词的潜在信息,从而提升模型的性能.ACE2005英文语料库上的实验结果表明,所提方法的F1值在事件检测任务上达到了77.9%.此外,在实验部分对以上2个问题进行了定量分析,证明了所提方法的有效性. 展开更多
关键词 潜在语义 分层结构 变分自编码器 表示学习 事件检测
下载PDF
基于BiLSTM-DAE的多家族恶意域名检测算法
13
作者 张咪 彭建山 《计算机应用与软件》 北大核心 2024年第10期319-324,共6页
针对现有恶意域名检测算法对于家族恶意域名检测精度不高和实时性不强的问题,提出一种基于BiLSTM-DAE的恶意域名检测算法。通过利用双向长短时记忆神经网络(Bi-directional Long Short Term Memory,BiLSTM)提取域名字符组合的上下文序... 针对现有恶意域名检测算法对于家族恶意域名检测精度不高和实时性不强的问题,提出一种基于BiLSTM-DAE的恶意域名检测算法。通过利用双向长短时记忆神经网络(Bi-directional Long Short Term Memory,BiLSTM)提取域名字符组合的上下文序列特征,并结合深度自编码网络(Deep Auto-Encoder,DAE)逐层压缩感知提取类内有共性和类间有区分性的强字符构词特征并进行分类。实验结果表明,与当前主流恶意域名检测算法相比,该算法在保持检测开销较小的基础上,具有更高的检测精度。 展开更多
关键词 恶意域名检测 深度自编码网络 双向长短时记忆神经网络 构词特征
下载PDF
基于多特征融合的应用系统监控指标异常检测方法
14
作者 曹钰聪 张俊 《计算机应用与软件》 北大核心 2024年第8期74-83,共10页
为解决现有监控指标异常检测技术存在的特征学习不充分、阈值固定等问题,提出一种基于多特征融合的应用系统监控指标异常检测方法。使用1D-CNN(1D-Convolutional Neural Network)与SRNN(Stochastic Recurrent Neural Network)提取数据特... 为解决现有监控指标异常检测技术存在的特征学习不充分、阈值固定等问题,提出一种基于多特征融合的应用系统监控指标异常检测方法。使用1D-CNN(1D-Convolutional Neural Network)与SRNN(Stochastic Recurrent Neural Network)提取数据特征,引入SE块(Squeeze-and-Excitation)突出指标关键特征以优化特征提取,加强分类效果。以VAE(Variational Auto-Encoder)为框架计算数据重构概率,并通过优化的极值模型计算最优异常阈值以判断异常。实验结果表明,所提方法在基于两个公开数据集的异常检测任务的F1评分最优达到92%,优于目前先进的异常检测方法。 展开更多
关键词 监控指标 异常检测 特征提取 变分自编码器 极值理论
下载PDF
基于自编码器结构与改进Bytetrack的低光照行人检测及跟踪算法
15
作者 任泽林 庞澜 +2 位作者 王超 李嘉恒 周方琰 《应用光学》 CAS 北大核心 2024年第3期616-629,共14页
针对夜间低光照场景下目标特征提取困难和跟踪不稳定的问题,提出了基于自编码器结构及改进Bytetrack的多目标行人检测及跟踪算法。在检测阶段,基于YOLOX(you only look once X)搭建多任务自编码变换模型框架,以一种自监督的方式考虑物... 针对夜间低光照场景下目标特征提取困难和跟踪不稳定的问题,提出了基于自编码器结构及改进Bytetrack的多目标行人检测及跟踪算法。在检测阶段,基于YOLOX(you only look once X)搭建多任务自编码变换模型框架,以一种自监督的方式考虑物理噪声模型和图像信号处理(image signal processing,ISP)的过程,通过对真实光照退化变换过程进行编码与解码学习内在视觉结构,并基于这种表示通过解码边界框坐标与类实现目标检测任务。为了抑制背景噪声的干扰,在目标解码器颈部网络引入自适应特征融合模块ASFF。跟踪阶段,基于Bytetrack算法进行改进,将基于Tranformer重识别网络提取到的外观嵌入信息与NSA卡尔曼滤波获得的运动信息通过自适应加权的方法完成数据关联,并通过Byte两次匹配的算法完成夜间行人的跟踪。在自建夜间行人检测数据集上测试检测模型的泛化能力,mAP@0.5达到了94.9%,结果表明本文的退化变换过程符合现实条件,具有良好的泛化能力。最后通过自建夜间行人跟踪数据集验证多目标跟踪性能,实验结果表明,本文提出的夜间低光照行人多目标跟踪算法MOTA(multiple object tracking accuracy)为89.55%,IDF1(identity F1 score)为88.34%,IDs(ID switches)为15。与基准方法Bytetrack相比,MOTA提高了10.72%,IDF1提高了6.19%,IDs减少了50%。结果表明,本文提出的基于自编码结构及改进Bytetrack的多目标跟踪算法可以有效解决在夜间低光照场景下行人跟踪困难的问题。 展开更多
关键词 多任务自编码变换 低光照 YOLOX 目标检测 多目标跟踪
下载PDF
Visual detection method of chamfer Ron the root bottom of textile workpiece roller
16
作者 HU Ling-hao LIU Chang jie +2 位作者 SHI Chun rain FU Lu hua LU Gang 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第3期205-213,共9页
Roller is an important workpiece of automatic spinning machine. Only if the chamferR on the root bottom of roller's guide pillar meets processing accuracy requirement can the end face of one roller's guide pillar ma... Roller is an important workpiece of automatic spinning machine. Only if the chamferR on the root bottom of roller's guide pillar meets processing accuracy requirement can the end face of one roller's guide pillar match the correct position of another roller's end face on the guide hole. Therefore, the size of chamfer R on the root bottomof the roller's guide pillar has an important influence on the operating state of automatic spinning machine. In order to achieve the rapid, automatic and precise measurement of chamfer R on the root bottom of roller, an auto detection system }'or roller~ s chamfer based on computer vision technology is proposed. Firstly, the principle of measurement based on computer vision technology is introduced. And then the extraction method of charnfer^s characteristic parameters is presented, which uses image processing technique to obtain these characteristic parameters by means of collected images of roller contour, including extraction of region of interest, extraction of subpixel precise edge, segmentation of arc and line, fittingof geometric primitives, etc. Finally, after experimental verification, the measurement error is within + 5 μm and repeated accuracy is 0.1 pm. The results show that this measurement method is applicable to not only the chamfer on the textile workpiece, but also the workpieces of shaft type with various of sizes. 展开更多
关键词 textile workpiece ROLLER CHAMFER image measurement auto detection
下载PDF
基于可解释性深度学习的物联网水质监测数据异常检测
17
作者 李永飞 李铭洋 +1 位作者 常鑫 曹可欣 《计算机工程》 CAS CSCD 北大核心 2024年第6期179-187,共9页
随着物联网技术的发展和应用范围的扩大,物联网设备和传感器的数量和种类也在不断增加。物联网水质传感器在生态监测与保护领域起着至关重要的作用,针对物联网水质传感器采集的监测数据中数据量大、维度高、无标注等问题,提出一种基于... 随着物联网技术的发展和应用范围的扩大,物联网设备和传感器的数量和种类也在不断增加。物联网水质传感器在生态监测与保护领域起着至关重要的作用,针对物联网水质传感器采集的监测数据中数据量大、维度高、无标注等问题,提出一种基于可解释性深度学习的无监督异常数据检测算法。使用自动编码器(AE)和SHAP算法对多维水质数据集进行异常检测。通过训练自动编码器模型,标记重建误差较大的数据,使用SHAP解释自动编码器并计算被标记数据中各数据特征的重要性。基于这些特征的重要性,确定最终的异常值,从而实现对水质监测数据的异常检测。在物联网水质监测数据集上的实验结果表明,该算法能有效检测出异常数据,F1值为0.875,性能优于当前无监督异常检测领域常用算法。该算法对于处理物联网水质监测数据具有实际应用价值,此外,还可以应用于其他领域的海量物联网监测数据的异常检测,例如气象、环境等领域。 展开更多
关键词 深度学习 自动编码器 异常检测 可解释机器学习 无监督学习
下载PDF
基于图自编码器多尺度特征的自监督群体发现
18
作者 沈国栋 汪晓锋 +3 位作者 毛岱波 王栽胜 张增杰 全大英 《计算机工程与设计》 北大核心 2024年第9期2805-2811,共7页
现有基于图自编码器的群体发现方法通常忽略了编码层多尺度特征对群体发现的影响,同时由于缺少统一的优化目标函数导致次优结果。为此,提出一种基于图自编码器多尺度特征融合的自监督群体发现方法。在图自编码器的基础上引入一种多尺度... 现有基于图自编码器的群体发现方法通常忽略了编码层多尺度特征对群体发现的影响,同时由于缺少统一的优化目标函数导致次优结果。为此,提出一种基于图自编码器多尺度特征融合的自监督群体发现方法。在图自编码器的基础上引入一种多尺度自表达模块,从不同编码层获取具有区分性的节点关系矩阵表示,并与节点潜在表示进行融合;通过节点聚类模块获得初步的群体识别结果;引入一种自监督模块监督节点表示学习过程,获得更优结果,构建一种端对端的网络群体发现模型。在多个公开数据集上进行对比实验,验证了所提方法的有效性,与现有方法相比,其在群体识别准确度上有了明显提升。 展开更多
关键词 图自编码器 群体发现 多尺度特征 自监督学习 特征融合 端到端 统一优化
下载PDF
基于广义投影梯度下降算法的深度学习大规模MIMO信号检测
19
作者 黄永明 王正 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第4期961-971,共11页
为了提升大规模MIMO系统的信号检测性能,对由投影和梯度下降(gradient descent,GD)这2个基础操作构成的投影梯度下降(projected gradient descent,PGD)算法进行研究.在基于PGD算法的大规模MIMO检测器中,由于投影和GD操作的损失函数不同... 为了提升大规模MIMO系统的信号检测性能,对由投影和梯度下降(gradient descent,GD)这2个基础操作构成的投影梯度下降(projected gradient descent,PGD)算法进行研究.在基于PGD算法的大规模MIMO检测器中,由于投影和GD操作的损失函数不同,迭代时需要使两者达到平衡,因此通过广义投影梯度下降(generalized projected gradient descent,GPGD)方法实现了投影和GD操作的灵活选取.GPGD方法中在多次的GD步骤后执行1次投影,与传统方式中交替进行投影和GD操作相比,具有显著优势;同时为了保证算法的收敛效率,也对GD操作的步长进行了探究.另外,通过对GPGD算法进行基于深度神经网络的迭代展开,进一步构建了自纠错自动检测器的检测框架,有效提升检测性能和效率.仿真结果表明,GPGD方法带来了明显的系统增益,具有显著的优越性. 展开更多
关键词 大规模MIMO检测 投影梯度下降 去噪自动编码器 深度学习
下载PDF
基于扩散模型下结合全卷积掩码自编码器的雾天目标检测方法
20
作者 贾飞 何家乐 李鹤鹏 《传感器世界》 2024年第1期29-34,共6页
针对自动驾驶车辆在雾天场景下所采集可见光图像因清晰度低以及噪声干扰等因素导致行人、车辆等目标检测精度降低的问题,提出一种基于扩散模型下结合全卷积掩码自编码器的雾天目标检测方法(HD-DiffusionDet)。首先,在图像编码阶段引入Co... 针对自动驾驶车辆在雾天场景下所采集可见光图像因清晰度低以及噪声干扰等因素导致行人、车辆等目标检测精度降低的问题,提出一种基于扩散模型下结合全卷积掩码自编码器的雾天目标检测方法(HD-DiffusionDet)。首先,在图像编码阶段引入ConvNeXtv2架构以及全卷积掩码自编码器训练策略,以提升网络对低清晰度的有雾图像高表征能力,获得有雾图像的编码特征;然后,利用基于扩散模型生成真实边界框的噪声框,通过生成的噪声框对图像编码器生成的特征图进行RoI特征的裁剪;随后,将裁剪后的RoI特征输入检测解码器,用于检测对象的分类和边界框回归。通过在自动驾驶真实雾天数据集RTTS上进行实验,所提方法的平均检测精度均高于其余方法,mAP值达到77.3%,降低了雾天场景下行人的漏检和误检情况,证明了所提方法的可行性与有效性。 展开更多
关键词 目标检测 自编码器 雾天场景 扩散模型
下载PDF
上一页 1 2 34 下一页 到第
使用帮助 返回顶部