We are evaluating dryland cotton production in Martin County, Texas, measuring cotton lint yield per unit of rainfall. Our goal is to collect rainfall data per 250 - 400 ha. Upon selection of a rainfall gauge, we real...We are evaluating dryland cotton production in Martin County, Texas, measuring cotton lint yield per unit of rainfall. Our goal is to collect rainfall data per 250 - 400 ha. Upon selection of a rainfall gauge, we realized that the cost of using, for example, a tipping bucket-type rain gauge would be too expensive and thus searched for an alternative method. We selected an all-in-one commercially available weather station;hereafter, referred to as a Personal Weather Station (PWS) that is both wireless and solar powered. Our objective was to evaluate average measurements of rainfall obtained with the PWS and to compare these to measurements obtained with an automatic weather station (AWS). For this purpose, we installed four PWS deployed within 20 m of the Plant Stress and Water Conservation Meteorological Tower that was used as our AWS, located at USDA-ARS Cropping Systems Research Laboratory, Lubbock, TX. In addition, we measured and compared hourly average values of short-wave irradiance (R<sub>g</sub>), air temperature (T<sub>air</sub>) and relative humidity (RH), and wind speed (WS), and calculated values of dewpoint temperature (T<sub>dew</sub>). This comparison was done over a 242-day period (1 October 2022-31 May 2023) and results indicated that there was no statistical difference in measurements of rainfall between the PWS and AWS. Hourly average values of R<sub>g</sub> measured with the PWS and AWS agreed on clear days, but PWS measurements were higher on cloudy days. There was no statistical difference between PWS and AWS hourly average measurements of T<sub>air</sub>, RH, and calculated T<sub>dew</sub>. Hourly average measurements of R<sub>g</sub> and WS were more variable. We concluded that the PWS we selected will provide adequate values of rainfall and other weather variables to meet our goal of evaluating dryland cotton lint yield per unit rainfall.展开更多
Weather events put human lives at risk mostly when people might occupy areas susceptible to natural disasters.Deploying Professional Weather Stations(PWS)in vulnerable areas is key for monitoring weather with reliable...Weather events put human lives at risk mostly when people might occupy areas susceptible to natural disasters.Deploying Professional Weather Stations(PWS)in vulnerable areas is key for monitoring weather with reliable measurements.However,such professional instrumentation is notably expensive while remote sensing from a number of stations is paramount.This imposes challenges on the large-scale weather station deployment for broad monitoring from large observation networks such as in Cemaden—The Brazilian National Center for Monitoring and Early Warning of Natural Disasters.In this context,in this paper,we propose a Low-Cost Automatic Weather Station(LCAWS)system developed from Commercial Off-The-Shelf(COTS)and open-source Internet of Things(IoT)technologies,which provides measurements as reliable as a reference PWS for natural disaster monitoring.When being automatic,LCAWS is a stand-alone photovoltaic system connected wirelessly to the Internet in order to provide real-time reliable end-to-end weather measurements.To achieve data reliability,we propose an intelligent sensor calibration method to correct measures.From a 30-day uninterrupted observation with sampling in minute resolution,we show that the calibrated LCAWS sensors have no statistically significant differences from the PWS measurements.As such,LCAWS has opened opportunities for reducing maintenance costs in Cemaden's observational network.展开更多
Based on the structure and working principle of rain sensors in new automatic weather stations,according to the abnormal precipitation records found in the observation business,the possible faults of rain sensors were...Based on the structure and working principle of rain sensors in new automatic weather stations,according to the abnormal precipitation records found in the observation business,the possible faults of rain sensors were analyzed,and treatment methods were discussed. Daily maintenance and management measures were put forward to ensure the normal operation of rain sensors and improve the quality of surface meteorological observation business.展开更多
A large number of automatic weather stations with different observation elements and gradient configurations are connected for operation,in order to meet the meteorological service needs of different scenes.The statio...A large number of automatic weather stations with different observation elements and gradient configurations are connected for operation,in order to meet the meteorological service needs of different scenes.The station density and observation frequency are encrypted to obtain observation data with higher spatial and temporal resolution.The original message with fixed element data location is the data combination of all observation elements and the maximum observation gradient of each element,which not only has higher invalid data redundancy,but also restricts the efficiency of data collection and processing,and also increases communication costs.An adaptive coding design method for the original message of automatic weather station is proposed.The embedded software coding algorithm of the weather station collector is optimized according to"plug and output"to realize intelligent networking,intelligent identification of observation elements and gradients,and dynamic flexible output of messages with variable length.The intelligent networking and business application of nearly 4000 automatic weather stations across the province show that the networking data acquisition and processing are efficient and stable.展开更多
The identification method revealed asymmetric wavelets of dynamics, as fractal quanta of the behavior of the surface air layer at a height of 2 m, according to the average monthly temperature at four weather stations ...The identification method revealed asymmetric wavelets of dynamics, as fractal quanta of the behavior of the surface air layer at a height of 2 m, according to the average monthly temperature at four weather stations in India (Srinagar, Jolhpur, New Delhi and Guvahati). For Srinagar station, the maximum for all years is observed in July, for Jolhpur and New Delhi stations it shifts to June, and for Guvahati it shifts to August. With a high correlation coefficient of 0.9659, 0.8640 and 0.8687, a three-factor model of the form was obtained. The altitude, longitude and latitude of the station are given sequentially. The hottest month for Srinagar over a period of 130 years is in July. At the same time, the temperature increased from 23.4 °C to 24.2 °C (by 3.31%). A noticeable decrease in the intensity of heat flows in June occurred at Jolhpur (over 125 years, a decrease from 36.2 °C to 33.3 °C, or by 8.71%) and New Delhi (over 90 years, a decrease from 35.1 °C to 32.4 °C, or by 7.69%). For almost 120 years, Guvahati has experienced complex climate changes: In 1902, the hottest month was July, but in 2021 it has shifted to August. The increase in temperature at various stations is considered. At Srinagar station in 2021, compared to 1892, temperatures increased in June, September and October. Guvahati has a 120-year increase in December, January, March and April. Temperatures have risen in February, March and April at Jolhpur in 125 years, but have risen in February and March at New Delhi Station in 90 years. Despite the presence of tropical evergreen forests, the area around Guvahati Station is expected to experience strong warming.展开更多
Meteorological data is useful for varied applications and sectors ranging from weather and climate forecasting, landscape planning to disaster management among others. However, the availability of these data requires ...Meteorological data is useful for varied applications and sectors ranging from weather and climate forecasting, landscape planning to disaster management among others. However, the availability of these data requires a good network of manual meteorological stations and other support systems for its collection, recording, processing, archiving, communication and dissemination. In sub-Saharan Africa, such networks are limited due to low investment and capacity. To bridge this gap, the National Meteorological Services in Kenya and few others from African countries have moved to install a number of Automatic Weather Stations (AWSs) in the past decade including a few additions from private institutions and individuals. Although these AWSs have the potential to improve the existing observation network and the early warning systems in the region, the quality and capacity of the data collected from the stations are not well exploited. This is mainly due to low confidence, by data users, in electronically observed data. In this study, we set out to confirm that electronically observed data is of comparable quality to a human observer recorded data, and can thus be used to bridge data gaps at temporal and spatial scales. To assess this potential, we applied the simple Pearson correlation method and other statistical tests and approaches by conducting inter-comparison analysis of weather observations from the manual synoptic station and data from two Automatic Weather Stations (TAHMO and 3D-PAWS) co-located at KMD Headquarters to establish existing consistencies and variances in several weather parameters. Results show there is comparable consistency in most of the weather parameters between the three stations. Strong associations were noted between the TAHMO and manual station data for minimum (r = 0.65) and maximum temperatures (r = 0.86) and the maximum temperature between TAHMO and 3DPAWS (r = 0.56). Similar associations were indicated for surface pressure (r = 0.99) and RH (r > 0.6) with the weakest correlations occurring in wind direction and speed. The Shapiro test for normality assumption indicated that the distribution of several parameters compared between the 3 stations were normally distributed (p > 0.05). We conclude that these findings can be used as a basis for wider use of data sets from Automatic Weather Stations in Kenya and elsewhere. This can inform various applications in weather and climate related decisions.展开更多
The instruments of regional automatic weather station are placed outside to measure daily changes of meteorological factors. Due to common influence of sun,wind,rain and other factors,it is very easy to cause various ...The instruments of regional automatic weather station are placed outside to measure daily changes of meteorological factors. Due to common influence of sun,wind,rain and other factors,it is very easy to cause various faults and damages of the instrument. The construction of regional automatic weather station network plays an important role in improving forecast accuracy,servicing local government and ecological civilization construction,providing scientific disaster prevention and relief decision-making basis for government department. In this paper,based on daily operation situation of regional automatic weather station in Shaoyang region,combining communication,hardware and software,fault situation of collector,temperature and humidity sensor,wind sensor and rainfall sensor in automatic weather station is analyzed in detail. Moreover,some common fault cases are listed and analyzed,some troubleshooting methods are summarized,and daily maintenance measures are proposed.展开更多
This paper mainly studies Weather Stations part of the wind power station. The use of wind energy in practice is carried out using the facilities of the wind in which the kinetic energy of the windscreen flow is conve...This paper mainly studies Weather Stations part of the wind power station. The use of wind energy in practice is carried out using the facilities of the wind in which the kinetic energy of the windscreen flow is converted into mechanical energy wind speed, then electrical energy alternator. The effective operation of the wind turbine is dependent on the direction of the wind. Speed air density, which in turn depends on the temperature and humidity. Thus, the speed of the wind worked effectively in its composition must include the weather. Meteorological station also performs the role of prevention. When the sharp wind speed or increase wind speed above the maximum value, it sends a signal to the lock assembly wind to prevent wind turbine technology from damage. The work of the meteorological stations design as part of the Wind Energy Station is considered. The complex technical devices are used for its implementation. A set of technical means used to its implementation and designed system consists of a temperature, humidity, wind speed, wind direction and rain gauge sensors that are connected to PIC16f876A microcontroller.展开更多
The chief aim of this study is to investigate the chemical weathering process of the weathering crust in Great Wall Station region of China (in Fildes Peninsula), Antarctica by the method of sedimentology.CW,SW,GW,TW,...The chief aim of this study is to investigate the chemical weathering process of the weathering crust in Great Wall Station region of China (in Fildes Peninsula), Antarctica by the method of sedimentology.CW,SW,GW,TW,WE weathering crusts developed on volcanic clastic rock, gray aptitic basalt with tuff or basaltic bedrock. On change of minerals, geochemical behaviors of elements, migration and enrichment regularities of elements, Correlation between element geochemical behaviors, change of weathering potential of rocks in chemical weathering process are studied by us.We can see that the sequence fo weathering strengths of the abovementioned sections, from high to low, should reflected in TW, GW, CW and SWT and basical correspond with that calculated from the enrichment and differentiation indexes.展开更多
We present a problem for benchmarking the robustness of cellular up-links, in an automatic weather station (AWS) testbed. Based on the problem, we conduct a small-scale measurement study of robustness, where the AWS i...We present a problem for benchmarking the robustness of cellular up-links, in an automatic weather station (AWS) testbed. Based on the problem, we conduct a small-scale measurement study of robustness, where the AWS is equipped with four (4) cellular modems for weather data delivery. The effectiveness of up-links is challenging because of overlapping spatial-temporal factors such as the presence of good reflectors that lead to multi-path effects, interference, network load or other reasons. We argue that, there is a strong need for independent assessments of their robustness, to perform end-to-end network measurement. However, it is yet difficult to go from a particular measurement to an assessment of the entire network. We extensively measure the variability of Radio Signal Strength (RSSI) as link metric on the cellular modems. The RSSI is one of the important link metrics that can determine the robustness of received RF signals, and explore how they differed from one another at a particular location and instant time. We also apply the statistical analysis that quantifies the level of stability by considering the robustness, referring short-term variation, and determines good up-link in comparison to weak one. The results show that the robustness of cellular up-links exists for an unpredictable period of time and lower than one could hope. More than 50% of up-links are intermittent. Therefore, we plan to extend our work by exploring RSSI thresholds, to develop a classification scheme supporting a decision whether a link is either intermittent or not. This will help in normalizing the level of stability, to design the RSSI estimation metric for the robust routing protocol in weather data networks.展开更多
In-situ calibrations of weather stations are usually performed by positioning standard instruments close to the station under calibration and comparing the obtained results. This procedure could be useful to evaluate ...In-situ calibrations of weather stations are usually performed by positioning standard instruments close to the station under calibration and comparing the obtained results. This procedure could be useful to evaluate the proper functioning of the monitoring equipments, but do not allowed the determination of a calibration curve that allow the corrections of the acquired parameters. Thus, the development of a dedicated facility for in-situ calibration of weather stations, enabling simultaneous generation of a wide range of temperatures and pressures could offer important improvements in this framework, particularly if this facility is applied to high mountains monitoring stations where the weather stations calibrations could be very difficult. This paper will present the calibration chamber developed in the framework of the EMRP-METEOMET (Metrology for Meteorology) Project, which aims is to bring metrological traceability to high altitude meteorological instruments and through this experience will provide a general overview on the importance of the application of this methodology at different levels.展开更多
The study area is located between the cities of Comitan (16°10'43"N and 92°04'20''W) a city with 150,000 inhabitants and La Esperanza (16°9'15''N and 91°...The study area is located between the cities of Comitan (16°10'43"N and 92°04'20''W) a city with 150,000 inhabitants and La Esperanza (16°9'15''N and 91°52'5''W) a town with 3000 inhabitants. Both weather stations are 30 km from each other in the Chiapas State, México. 54 years of daily records of the series of maximum (<em>t</em><sub>max</sub>) and minimum temperatures (<em>t</em><sub>min</sub>) of the weather station 07205 Comitan that is on top of a house and 30 years of daily records of the weather station 07374 La Esperanza were analyzed. The objective is to analyze the evidence of climate change in the Comitan valley. 2.07% and 19.04% of missing data were filled, respectively, with the WS method. In order to verify homogeneity three methods were used: Standard Normal Homogeneity Test (SNHT), the Von Neumann method and the Buishand method. The heterogeneous series were homogenized using climatol. The trends of <em>t</em><sub>max</sub> and <em>t</em><sub>min</sub> for both weather stations were analyzed by simple linear regression, Sperman’s rho and Mann-Kendall tests. The Mann-Kendal test method confirmed the warming trend at the Comitan station for both variables with <em>Z<sub>MK</sub></em> statistic values equal to 1.57 (statistically not significant) and 4.64 (statistically significant). However, for the Esperanza station, it determined a cooling trend for tmin and a slight non-significant warming for <em>t</em><sub>max</sub> with a <em>Z</em><sub><em>MK</em></sub> statistic of -2.27 (statistically significant) and 1.16 (statistically not significant), for a significance level <em>α</em> = 0.05.展开更多
The quality control system for meteorological real-time data from automatic weather stations in Shandong realized integration of communi- cation system and provincial quality control system, and an interaction platfor...The quality control system for meteorological real-time data from automatic weather stations in Shandong realized integration of communi- cation system and provincial quality control system, and an interaction platform which was mainly created by Web was set up. The system not only was fully guaranteed for the funning of basic business, also improved the reliability of the data.展开更多
高时空分辨率自动气象站降水观测作为重要数据来源,已被广泛应用于强对流天气监测、模式评估、预报复盘等研究工作。仪器故障、特殊天气条件下观测设备的局限性等因素是自动气象站降水数据不确定性的主要来源,这些问题在无人值守气象站...高时空分辨率自动气象站降水观测作为重要数据来源,已被广泛应用于强对流天气监测、模式评估、预报复盘等研究工作。仪器故障、特殊天气条件下观测设备的局限性等因素是自动气象站降水数据不确定性的主要来源,这些问题在无人值守气象站尤为突出。该研究基于2021—2023年中国自动气象站实时观测降水量数据、高时空分辨率雷达数据和高灵敏性降水类天气现象数据,发展适应于中国自动气象站小时降水数据的多源数据协同质量控制方法(multi-source data collaborative quality control,MDC)。通过综合定量指标与典型个例分析,对MDC的应用效果进行全面评估。结果显示:MDC判识正确率为99.92%,错误数据命中率较现行业务提升39.3%。基于多源降水观测数据时空一致性,MDC显著提升了晴空降水、融雪性降水和虚假零值降水等异常数据的甄别能力,有效弥补了传统方法的不足。展开更多
文摘We are evaluating dryland cotton production in Martin County, Texas, measuring cotton lint yield per unit of rainfall. Our goal is to collect rainfall data per 250 - 400 ha. Upon selection of a rainfall gauge, we realized that the cost of using, for example, a tipping bucket-type rain gauge would be too expensive and thus searched for an alternative method. We selected an all-in-one commercially available weather station;hereafter, referred to as a Personal Weather Station (PWS) that is both wireless and solar powered. Our objective was to evaluate average measurements of rainfall obtained with the PWS and to compare these to measurements obtained with an automatic weather station (AWS). For this purpose, we installed four PWS deployed within 20 m of the Plant Stress and Water Conservation Meteorological Tower that was used as our AWS, located at USDA-ARS Cropping Systems Research Laboratory, Lubbock, TX. In addition, we measured and compared hourly average values of short-wave irradiance (R<sub>g</sub>), air temperature (T<sub>air</sub>) and relative humidity (RH), and wind speed (WS), and calculated values of dewpoint temperature (T<sub>dew</sub>). This comparison was done over a 242-day period (1 October 2022-31 May 2023) and results indicated that there was no statistical difference in measurements of rainfall between the PWS and AWS. Hourly average values of R<sub>g</sub> measured with the PWS and AWS agreed on clear days, but PWS measurements were higher on cloudy days. There was no statistical difference between PWS and AWS hourly average measurements of T<sub>air</sub>, RH, and calculated T<sub>dew</sub>. Hourly average measurements of R<sub>g</sub> and WS were more variable. We concluded that the PWS we selected will provide adequate values of rainfall and other weather variables to meet our goal of evaluating dryland cotton lint yield per unit rainfall.
基金partially funded by Sao Paulo Research Foundation(FAPESP),Brazil,grant numbers#2015/18808-0,#2018/23064-8,#2019/23382-2.
文摘Weather events put human lives at risk mostly when people might occupy areas susceptible to natural disasters.Deploying Professional Weather Stations(PWS)in vulnerable areas is key for monitoring weather with reliable measurements.However,such professional instrumentation is notably expensive while remote sensing from a number of stations is paramount.This imposes challenges on the large-scale weather station deployment for broad monitoring from large observation networks such as in Cemaden—The Brazilian National Center for Monitoring and Early Warning of Natural Disasters.In this context,in this paper,we propose a Low-Cost Automatic Weather Station(LCAWS)system developed from Commercial Off-The-Shelf(COTS)and open-source Internet of Things(IoT)technologies,which provides measurements as reliable as a reference PWS for natural disaster monitoring.When being automatic,LCAWS is a stand-alone photovoltaic system connected wirelessly to the Internet in order to provide real-time reliable end-to-end weather measurements.To achieve data reliability,we propose an intelligent sensor calibration method to correct measures.From a 30-day uninterrupted observation with sampling in minute resolution,we show that the calibrated LCAWS sensors have no statistically significant differences from the PWS measurements.As such,LCAWS has opened opportunities for reducing maintenance costs in Cemaden's observational network.
文摘Based on the structure and working principle of rain sensors in new automatic weather stations,according to the abnormal precipitation records found in the observation business,the possible faults of rain sensors were analyzed,and treatment methods were discussed. Daily maintenance and management measures were put forward to ensure the normal operation of rain sensors and improve the quality of surface meteorological observation business.
基金Supported by Technical Innovation Team Project of Collaborative Observation and Multi-source Live Data Fusion Analysis of Guangdong Meteorological Bu-reau(GRMCTD202103)R&D Plan Projects of Key Fields in Guangdong Province(2020B1111200001).
文摘A large number of automatic weather stations with different observation elements and gradient configurations are connected for operation,in order to meet the meteorological service needs of different scenes.The station density and observation frequency are encrypted to obtain observation data with higher spatial and temporal resolution.The original message with fixed element data location is the data combination of all observation elements and the maximum observation gradient of each element,which not only has higher invalid data redundancy,but also restricts the efficiency of data collection and processing,and also increases communication costs.An adaptive coding design method for the original message of automatic weather station is proposed.The embedded software coding algorithm of the weather station collector is optimized according to"plug and output"to realize intelligent networking,intelligent identification of observation elements and gradients,and dynamic flexible output of messages with variable length.The intelligent networking and business application of nearly 4000 automatic weather stations across the province show that the networking data acquisition and processing are efficient and stable.
文摘The identification method revealed asymmetric wavelets of dynamics, as fractal quanta of the behavior of the surface air layer at a height of 2 m, according to the average monthly temperature at four weather stations in India (Srinagar, Jolhpur, New Delhi and Guvahati). For Srinagar station, the maximum for all years is observed in July, for Jolhpur and New Delhi stations it shifts to June, and for Guvahati it shifts to August. With a high correlation coefficient of 0.9659, 0.8640 and 0.8687, a three-factor model of the form was obtained. The altitude, longitude and latitude of the station are given sequentially. The hottest month for Srinagar over a period of 130 years is in July. At the same time, the temperature increased from 23.4 °C to 24.2 °C (by 3.31%). A noticeable decrease in the intensity of heat flows in June occurred at Jolhpur (over 125 years, a decrease from 36.2 °C to 33.3 °C, or by 8.71%) and New Delhi (over 90 years, a decrease from 35.1 °C to 32.4 °C, or by 7.69%). For almost 120 years, Guvahati has experienced complex climate changes: In 1902, the hottest month was July, but in 2021 it has shifted to August. The increase in temperature at various stations is considered. At Srinagar station in 2021, compared to 1892, temperatures increased in June, September and October. Guvahati has a 120-year increase in December, January, March and April. Temperatures have risen in February, March and April at Jolhpur in 125 years, but have risen in February and March at New Delhi Station in 90 years. Despite the presence of tropical evergreen forests, the area around Guvahati Station is expected to experience strong warming.
文摘Meteorological data is useful for varied applications and sectors ranging from weather and climate forecasting, landscape planning to disaster management among others. However, the availability of these data requires a good network of manual meteorological stations and other support systems for its collection, recording, processing, archiving, communication and dissemination. In sub-Saharan Africa, such networks are limited due to low investment and capacity. To bridge this gap, the National Meteorological Services in Kenya and few others from African countries have moved to install a number of Automatic Weather Stations (AWSs) in the past decade including a few additions from private institutions and individuals. Although these AWSs have the potential to improve the existing observation network and the early warning systems in the region, the quality and capacity of the data collected from the stations are not well exploited. This is mainly due to low confidence, by data users, in electronically observed data. In this study, we set out to confirm that electronically observed data is of comparable quality to a human observer recorded data, and can thus be used to bridge data gaps at temporal and spatial scales. To assess this potential, we applied the simple Pearson correlation method and other statistical tests and approaches by conducting inter-comparison analysis of weather observations from the manual synoptic station and data from two Automatic Weather Stations (TAHMO and 3D-PAWS) co-located at KMD Headquarters to establish existing consistencies and variances in several weather parameters. Results show there is comparable consistency in most of the weather parameters between the three stations. Strong associations were noted between the TAHMO and manual station data for minimum (r = 0.65) and maximum temperatures (r = 0.86) and the maximum temperature between TAHMO and 3DPAWS (r = 0.56). Similar associations were indicated for surface pressure (r = 0.99) and RH (r > 0.6) with the weakest correlations occurring in wind direction and speed. The Shapiro test for normality assumption indicated that the distribution of several parameters compared between the 3 stations were normally distributed (p > 0.05). We conclude that these findings can be used as a basis for wider use of data sets from Automatic Weather Stations in Kenya and elsewhere. This can inform various applications in weather and climate related decisions.
文摘The instruments of regional automatic weather station are placed outside to measure daily changes of meteorological factors. Due to common influence of sun,wind,rain and other factors,it is very easy to cause various faults and damages of the instrument. The construction of regional automatic weather station network plays an important role in improving forecast accuracy,servicing local government and ecological civilization construction,providing scientific disaster prevention and relief decision-making basis for government department. In this paper,based on daily operation situation of regional automatic weather station in Shaoyang region,combining communication,hardware and software,fault situation of collector,temperature and humidity sensor,wind sensor and rainfall sensor in automatic weather station is analyzed in detail. Moreover,some common fault cases are listed and analyzed,some troubleshooting methods are summarized,and daily maintenance measures are proposed.
文摘This paper mainly studies Weather Stations part of the wind power station. The use of wind energy in practice is carried out using the facilities of the wind in which the kinetic energy of the windscreen flow is converted into mechanical energy wind speed, then electrical energy alternator. The effective operation of the wind turbine is dependent on the direction of the wind. Speed air density, which in turn depends on the temperature and humidity. Thus, the speed of the wind worked effectively in its composition must include the weather. Meteorological station also performs the role of prevention. When the sharp wind speed or increase wind speed above the maximum value, it sends a signal to the lock assembly wind to prevent wind turbine technology from damage. The work of the meteorological stations design as part of the Wind Energy Station is considered. The complex technical devices are used for its implementation. A set of technical means used to its implementation and designed system consists of a temperature, humidity, wind speed, wind direction and rain gauge sensors that are connected to PIC16f876A microcontroller.
文摘The chief aim of this study is to investigate the chemical weathering process of the weathering crust in Great Wall Station region of China (in Fildes Peninsula), Antarctica by the method of sedimentology.CW,SW,GW,TW,WE weathering crusts developed on volcanic clastic rock, gray aptitic basalt with tuff or basaltic bedrock. On change of minerals, geochemical behaviors of elements, migration and enrichment regularities of elements, Correlation between element geochemical behaviors, change of weathering potential of rocks in chemical weathering process are studied by us.We can see that the sequence fo weathering strengths of the abovementioned sections, from high to low, should reflected in TW, GW, CW and SWT and basical correspond with that calculated from the enrichment and differentiation indexes.
文摘We present a problem for benchmarking the robustness of cellular up-links, in an automatic weather station (AWS) testbed. Based on the problem, we conduct a small-scale measurement study of robustness, where the AWS is equipped with four (4) cellular modems for weather data delivery. The effectiveness of up-links is challenging because of overlapping spatial-temporal factors such as the presence of good reflectors that lead to multi-path effects, interference, network load or other reasons. We argue that, there is a strong need for independent assessments of their robustness, to perform end-to-end network measurement. However, it is yet difficult to go from a particular measurement to an assessment of the entire network. We extensively measure the variability of Radio Signal Strength (RSSI) as link metric on the cellular modems. The RSSI is one of the important link metrics that can determine the robustness of received RF signals, and explore how they differed from one another at a particular location and instant time. We also apply the statistical analysis that quantifies the level of stability by considering the robustness, referring short-term variation, and determines good up-link in comparison to weak one. The results show that the robustness of cellular up-links exists for an unpredictable period of time and lower than one could hope. More than 50% of up-links are intermittent. Therefore, we plan to extend our work by exploring RSSI thresholds, to develop a classification scheme supporting a decision whether a link is either intermittent or not. This will help in normalizing the level of stability, to design the RSSI estimation metric for the robust routing protocol in weather data networks.
文摘In-situ calibrations of weather stations are usually performed by positioning standard instruments close to the station under calibration and comparing the obtained results. This procedure could be useful to evaluate the proper functioning of the monitoring equipments, but do not allowed the determination of a calibration curve that allow the corrections of the acquired parameters. Thus, the development of a dedicated facility for in-situ calibration of weather stations, enabling simultaneous generation of a wide range of temperatures and pressures could offer important improvements in this framework, particularly if this facility is applied to high mountains monitoring stations where the weather stations calibrations could be very difficult. This paper will present the calibration chamber developed in the framework of the EMRP-METEOMET (Metrology for Meteorology) Project, which aims is to bring metrological traceability to high altitude meteorological instruments and through this experience will provide a general overview on the importance of the application of this methodology at different levels.
文摘The study area is located between the cities of Comitan (16°10'43"N and 92°04'20''W) a city with 150,000 inhabitants and La Esperanza (16°9'15''N and 91°52'5''W) a town with 3000 inhabitants. Both weather stations are 30 km from each other in the Chiapas State, México. 54 years of daily records of the series of maximum (<em>t</em><sub>max</sub>) and minimum temperatures (<em>t</em><sub>min</sub>) of the weather station 07205 Comitan that is on top of a house and 30 years of daily records of the weather station 07374 La Esperanza were analyzed. The objective is to analyze the evidence of climate change in the Comitan valley. 2.07% and 19.04% of missing data were filled, respectively, with the WS method. In order to verify homogeneity three methods were used: Standard Normal Homogeneity Test (SNHT), the Von Neumann method and the Buishand method. The heterogeneous series were homogenized using climatol. The trends of <em>t</em><sub>max</sub> and <em>t</em><sub>min</sub> for both weather stations were analyzed by simple linear regression, Sperman’s rho and Mann-Kendall tests. The Mann-Kendal test method confirmed the warming trend at the Comitan station for both variables with <em>Z<sub>MK</sub></em> statistic values equal to 1.57 (statistically not significant) and 4.64 (statistically significant). However, for the Esperanza station, it determined a cooling trend for tmin and a slight non-significant warming for <em>t</em><sub>max</sub> with a <em>Z</em><sub><em>MK</em></sub> statistic of -2.27 (statistically significant) and 1.16 (statistically not significant), for a significance level <em>α</em> = 0.05.
文摘The quality control system for meteorological real-time data from automatic weather stations in Shandong realized integration of communi- cation system and provincial quality control system, and an interaction platform which was mainly created by Web was set up. The system not only was fully guaranteed for the funning of basic business, also improved the reliability of the data.
文摘高时空分辨率自动气象站降水观测作为重要数据来源,已被广泛应用于强对流天气监测、模式评估、预报复盘等研究工作。仪器故障、特殊天气条件下观测设备的局限性等因素是自动气象站降水数据不确定性的主要来源,这些问题在无人值守气象站尤为突出。该研究基于2021—2023年中国自动气象站实时观测降水量数据、高时空分辨率雷达数据和高灵敏性降水类天气现象数据,发展适应于中国自动气象站小时降水数据的多源数据协同质量控制方法(multi-source data collaborative quality control,MDC)。通过综合定量指标与典型个例分析,对MDC的应用效果进行全面评估。结果显示:MDC判识正确率为99.92%,错误数据命中率较现行业务提升39.3%。基于多源降水观测数据时空一致性,MDC显著提升了晴空降水、融雪性降水和虚假零值降水等异常数据的甄别能力,有效弥补了传统方法的不足。