In this paper, autocovariance nonstationary time series is clearly defined on a family of time series. We propose three types of TVPAR (time-varying parameter auto-regressive) models: the full order TVPAR model, the t...In this paper, autocovariance nonstationary time series is clearly defined on a family of time series. We propose three types of TVPAR (time-varying parameter auto-regressive) models: the full order TVPAR model, the time-unvarying order TVPAR model and the time-varying order TV-PAR model for autocovariance nonstationary time series. Related minimum AIC (Akaike information criterion) estimations are carried out.展开更多
To identify the model structure parameters in shaking table tests from seismic response, especially from time- varying response records, this paper presents a new methodology by combining the online recursive Adaptive...To identify the model structure parameters in shaking table tests from seismic response, especially from time- varying response records, this paper presents a new methodology by combining the online recursive Adaptive Forgetting through Multiple Models (AFMM) and offtine Auto-Regression with eXogenous variables (ARX) model. First, the AFMM is employed to detect whether the response of model structure is time-invariant or time-varying when subjected to strong motions. Second, if the response is time-invariant, the modal parameters are identified from the entire response record, such as the acceleration time-history using the ARX model. If the response is time-varying, the acceleration record is divided into three segments according to the accurate time-varying points detected by AFMM, and parameters are identified by only using the tail segment data, which is time-invariant and suited for analysis by the ARX model. Finally, the changes in dynamic properties due to various strong motions are obtained using the presented methodology. The feasibility and advantages of the method are demonstrated by identifying the modal parameters of a 12-story reinforced concrete (RC) frame structure in a shaking table test.展开更多
For describing target motion in hypersonic vehicle defense,a parametric analyzing and modeling method on ballistic data is proposed based on time varying auto-regressive method.Ballistic data are regarded as non-stati...For describing target motion in hypersonic vehicle defense,a parametric analyzing and modeling method on ballistic data is proposed based on time varying auto-regressive method.Ballistic data are regarded as non-stationary random signal,where the hidden internal law is studied.Firstly,ballistic data are decomposed into smooth linear trend signal and non-stationary periodic skip signal with ensemble empirical mode decomposition method to avoid mutual interference between different modal data.Secondly,the linear trend signal and the periodic skip signal are modeled separately.The linear trend signal is approximated by power function regressive estimator and the periodic skip signal is modeled based on time varying auto-regressive method.In order to determine optimal model orders,a novel method is presented based on information theoretic criteria and the criteria of minimizing the mean absolute error.Finally,the consistency test is conducted by investigating the time-frequency spectrum characteristics and statistical properties of outputs of the parametric model established above and dynamics model under the same initial condition.Simulation results demonstrate that the parametric model established by the proposed method shares a high consistency with the original dynamics model.展开更多
The time-varying autoregressive (TVAR) modeling of a non-stationary signal is studied. In the proposed method, time-varying parametric identification of a non-stationary signal can be translated into a linear time-i...The time-varying autoregressive (TVAR) modeling of a non-stationary signal is studied. In the proposed method, time-varying parametric identification of a non-stationary signal can be translated into a linear time-invariant problem by introducing a set of basic functions. Then, the parameters are estimated by using a recursive least square algorithm with a forgetting factor and an adaptive time-frequency distribution is achieved. The simulation results show that the proposed approach is superior to the short-time Fourier transform and Wigner distribution. And finally, the proposed method is applied to the fault diagnosis of a bearing , and the experiment result shows that the proposed method is effective in feature extraction.展开更多
A high contrast to noise ratio(CNR)is always desirable for contrast-enhanced computed tomography angiography(CTA).To ensure a high CNR of the vascular images in CTA and potentially reduce the radiation exposure and co...A high contrast to noise ratio(CNR)is always desirable for contrast-enhanced computed tomography angiography(CTA).To ensure a high CNR of the vascular images in CTA and potentially reduce the radiation exposure and contrast usage,an adaptive bolus chasing method is proposed and evaluated compared to the existing constant-speed method.The proposed method is based on a local time and space parameter varying model of the contrast bolus.Optimal scan time for the next segment of the vasculature is estimated and predicted in real time and guides the computed tomography(CT)scanner table movement that guarantees that each segment of the vasculature is scanned with the maximum possible enhancement.Simulations and experimental results show that the proposed bolus chasing method outperforms the conventional constant-speed method substantially.展开更多
The machinery fault signal is a typical non-Gaussian and non-stationary process. The fault signal can be described by SaS distribution model because of the presence of impulses.Time-frequency distribution is a useful ...The machinery fault signal is a typical non-Gaussian and non-stationary process. The fault signal can be described by SaS distribution model because of the presence of impulses.Time-frequency distribution is a useful tool to extract helpful information of the machinery fault signal. Various fractional lower order(FLO) time-frequency distribution methods have been proposed based on fractional lower order statistics, which include fractional lower order short time Fourier transform(FLO-STFT), fractional lower order Wigner-Ville distributions(FLO-WVDs), fractional lower order Cohen class time-frequency distributions(FLO-CDs), fractional lower order adaptive kernel time-frequency distributions(FLO-AKDs) and adaptive fractional lower order time-frequency auto-regressive moving average(FLO-TFARMA) model time-frequency representation method.The methods and the exiting methods based on second order statistics in SaS distribution environments are compared, simulation results show that the new methods have better performances than the existing methods. The advantages and disadvantages of the improved time-frequency methods have been summarized.Last, the new methods are applied to analyze the outer race fault signals, the results illustrate their good performances.展开更多
In this manuscript we discuss mass-varying neutrinos and propose their energy density to exceed that of baryonic and dark matter. We introduce cosmic Large Grains whose mass is about Planck mass, and their temperature...In this manuscript we discuss mass-varying neutrinos and propose their energy density to exceed that of baryonic and dark matter. We introduce cosmic Large Grains whose mass is about Planck mass, and their temperature is around 29 K. Large Grains are in fact Bose-Einstein condensates of proposed dineutrinos, and are responsible for the cosmic Far-Infrared Background (FIRB) radiation. The distribution of the energy density of all components of the World (protons, electrons, photons, neutrinos, and dark matter particles) is considered. We present an overview of the World- Universe Model (WUM) and pay particular attention to the self-consistent set of time-varying values of basic parameters of the World: the age and critical energy density;Newtonian parameter of gravitation and Hubble’s parameter;temperatures of the cosmic Microwave Background radiation and the peak of the cosmic FIRB radiation;Fermi coupling parameter and coupling parameters of the proposed Super-Weak and Extremely-Weak interactions. Additionally, WUM forecasts the masses of dark matter particles, axions, and neutrinos;proposes two fundamental parameters of the World: fine-structure constant α and the quantity Q which is the dimensionless value of the fifth coordinate, and three fundamental physical units: basic unit of momentum, energy density, and energy flux density. WUM suggests that all time-dependent parameters of the World are inter- connected and in fact dependent on Q. We recommend adding the quantity Q to the list of the CODATA-recommended values.展开更多
The concept of cointegration describes an equilibrium relationship among a set of time-varying variables, and the cointegrated relationship can be represented through an error-correction model (ECM). The error-correct...The concept of cointegration describes an equilibrium relationship among a set of time-varying variables, and the cointegrated relationship can be represented through an error-correction model (ECM). The error-correction variable, which represents the short-run discrepancy from the equilibrium state in a cointegrated system, plays an important role in the ECM. It is natural to ask how the error-correction mechanism works, or equivalently, how the short-run discrepancy affects the development of the cointegrated system? This paper examines the effect or local influence on the error-correction variable in an error-correction model. Following the argument of the second-order approach to local influence suggested by reference [5], we develop a diagnostic statistic to examine the local influence on the estimation of the parameter associated with the error-correction variable in an ECM. An empirical example is presented to illustrate the application of the proposed diagnostic. We find that the short-run discre pancy may have strong influence on the estimation of the parameter associated with the error-correction model. It is the error-correction variable that the short-run discrepancies can be incorporated through the error-correction mechanism.展开更多
In 2013, World-Universe Model (WUM) proposed a principally different way to solve the problem of Newtonian Constant of Gravitation measurement precision. WUM revealed a self-consistent set of time-varying values of Pr...In 2013, World-Universe Model (WUM) proposed a principally different way to solve the problem of Newtonian Constant of Gravitation measurement precision. WUM revealed a self-consistent set of time-varying values of Primary Cosmological parameters of the World: Gravitation parameter, Hubble’s parameter, Age of the World, Temperature of the Microwave Background Radiation, and the concentration of Intergalactic plasma. Based on the inter-connectivity of these parameters, WUM solved the Missing Baryon problem and predicted the values of the following Cosmological parameters: gravitation G, concentration of Intergalactic plasma, relative energy density of protons in the Medium, and the minimum energy of photons, which were experimentally confirmed in 2015-2018. Between 2013 and 2018, the relative standard uncertainty of G measurements decreased x6. The set of values obtained by WUM was recommended for consideration in CODATA Recommended Values of the Fundamental Physical Constants 2014.展开更多
基金supported by the Doctoral Research Fund of the Ministry of Education, China (Grant No.20040285008)Grant-in-Aid for Scientific Research (B), the Ministry of Education, Science, Sports andCulture, Japan, 2005 (Grant No. 17300228)
文摘In this paper, autocovariance nonstationary time series is clearly defined on a family of time series. We propose three types of TVPAR (time-varying parameter auto-regressive) models: the full order TVPAR model, the time-unvarying order TVPAR model and the time-varying order TV-PAR model for autocovariance nonstationary time series. Related minimum AIC (Akaike information criterion) estimations are carried out.
基金Basic Science&Research Foundation of IEM,CEA under Grant No.2013B07International Science&Technology Cooperation Program of China under Grant No.2012DFA70810Natural Science Foundation of China under Grant No.50908216
文摘To identify the model structure parameters in shaking table tests from seismic response, especially from time- varying response records, this paper presents a new methodology by combining the online recursive Adaptive Forgetting through Multiple Models (AFMM) and offtine Auto-Regression with eXogenous variables (ARX) model. First, the AFMM is employed to detect whether the response of model structure is time-invariant or time-varying when subjected to strong motions. Second, if the response is time-invariant, the modal parameters are identified from the entire response record, such as the acceleration time-history using the ARX model. If the response is time-varying, the acceleration record is divided into three segments according to the accurate time-varying points detected by AFMM, and parameters are identified by only using the tail segment data, which is time-invariant and suited for analysis by the ARX model. Finally, the changes in dynamic properties due to various strong motions are obtained using the presented methodology. The feasibility and advantages of the method are demonstrated by identifying the modal parameters of a 12-story reinforced concrete (RC) frame structure in a shaking table test.
文摘For describing target motion in hypersonic vehicle defense,a parametric analyzing and modeling method on ballistic data is proposed based on time varying auto-regressive method.Ballistic data are regarded as non-stationary random signal,where the hidden internal law is studied.Firstly,ballistic data are decomposed into smooth linear trend signal and non-stationary periodic skip signal with ensemble empirical mode decomposition method to avoid mutual interference between different modal data.Secondly,the linear trend signal and the periodic skip signal are modeled separately.The linear trend signal is approximated by power function regressive estimator and the periodic skip signal is modeled based on time varying auto-regressive method.In order to determine optimal model orders,a novel method is presented based on information theoretic criteria and the criteria of minimizing the mean absolute error.Finally,the consistency test is conducted by investigating the time-frequency spectrum characteristics and statistical properties of outputs of the parametric model established above and dynamics model under the same initial condition.Simulation results demonstrate that the parametric model established by the proposed method shares a high consistency with the original dynamics model.
基金This paper is supported by National Natural Science Foundation of China under Grant No.50675209 InnovationFund for Outstanding Scholar of Henan Province under Grant No. 0621000500
文摘The time-varying autoregressive (TVAR) modeling of a non-stationary signal is studied. In the proposed method, time-varying parametric identification of a non-stationary signal can be translated into a linear time-invariant problem by introducing a set of basic functions. Then, the parameters are estimated by using a recursive least square algorithm with a forgetting factor and an adaptive time-frequency distribution is achieved. The simulation results show that the proposed approach is superior to the short-time Fourier transform and Wigner distribution. And finally, the proposed method is applied to the fault diagnosis of a bearing , and the experiment result shows that the proposed method is effective in feature extraction.
基金The work was supported partially by NSF ECS-0555394 and NIH/NIBIB EB004287.
文摘A high contrast to noise ratio(CNR)is always desirable for contrast-enhanced computed tomography angiography(CTA).To ensure a high CNR of the vascular images in CTA and potentially reduce the radiation exposure and contrast usage,an adaptive bolus chasing method is proposed and evaluated compared to the existing constant-speed method.The proposed method is based on a local time and space parameter varying model of the contrast bolus.Optimal scan time for the next segment of the vasculature is estimated and predicted in real time and guides the computed tomography(CT)scanner table movement that guarantees that each segment of the vasculature is scanned with the maximum possible enhancement.Simulations and experimental results show that the proposed bolus chasing method outperforms the conventional constant-speed method substantially.
基金supported by the National Natural Science Foundation of China(61261046,61362038)the Natural Science Foundation of Jiangxi Province(20142BAB207006,20151BAB207013)+2 种基金the Science and Technology Project of Provincial Education Department of Jiangxi Province(GJJ14738,GJJ14739)the Research Foundation of Health Department of Jiangxi Province(20175561)the Science and Technology Project of Jiujiang University(2016KJ001,2016KJ002)
文摘The machinery fault signal is a typical non-Gaussian and non-stationary process. The fault signal can be described by SaS distribution model because of the presence of impulses.Time-frequency distribution is a useful tool to extract helpful information of the machinery fault signal. Various fractional lower order(FLO) time-frequency distribution methods have been proposed based on fractional lower order statistics, which include fractional lower order short time Fourier transform(FLO-STFT), fractional lower order Wigner-Ville distributions(FLO-WVDs), fractional lower order Cohen class time-frequency distributions(FLO-CDs), fractional lower order adaptive kernel time-frequency distributions(FLO-AKDs) and adaptive fractional lower order time-frequency auto-regressive moving average(FLO-TFARMA) model time-frequency representation method.The methods and the exiting methods based on second order statistics in SaS distribution environments are compared, simulation results show that the new methods have better performances than the existing methods. The advantages and disadvantages of the improved time-frequency methods have been summarized.Last, the new methods are applied to analyze the outer race fault signals, the results illustrate their good performances.
文摘In this manuscript we discuss mass-varying neutrinos and propose their energy density to exceed that of baryonic and dark matter. We introduce cosmic Large Grains whose mass is about Planck mass, and their temperature is around 29 K. Large Grains are in fact Bose-Einstein condensates of proposed dineutrinos, and are responsible for the cosmic Far-Infrared Background (FIRB) radiation. The distribution of the energy density of all components of the World (protons, electrons, photons, neutrinos, and dark matter particles) is considered. We present an overview of the World- Universe Model (WUM) and pay particular attention to the self-consistent set of time-varying values of basic parameters of the World: the age and critical energy density;Newtonian parameter of gravitation and Hubble’s parameter;temperatures of the cosmic Microwave Background radiation and the peak of the cosmic FIRB radiation;Fermi coupling parameter and coupling parameters of the proposed Super-Weak and Extremely-Weak interactions. Additionally, WUM forecasts the masses of dark matter particles, axions, and neutrinos;proposes two fundamental parameters of the World: fine-structure constant α and the quantity Q which is the dimensionless value of the fifth coordinate, and three fundamental physical units: basic unit of momentum, energy density, and energy flux density. WUM suggests that all time-dependent parameters of the World are inter- connected and in fact dependent on Q. We recommend adding the quantity Q to the list of the CODATA-recommended values.
基金This project was supported by the National Natural Science Foundation (No. 79800012 and No. 79400014).
文摘The concept of cointegration describes an equilibrium relationship among a set of time-varying variables, and the cointegrated relationship can be represented through an error-correction model (ECM). The error-correction variable, which represents the short-run discrepancy from the equilibrium state in a cointegrated system, plays an important role in the ECM. It is natural to ask how the error-correction mechanism works, or equivalently, how the short-run discrepancy affects the development of the cointegrated system? This paper examines the effect or local influence on the error-correction variable in an error-correction model. Following the argument of the second-order approach to local influence suggested by reference [5], we develop a diagnostic statistic to examine the local influence on the estimation of the parameter associated with the error-correction variable in an ECM. An empirical example is presented to illustrate the application of the proposed diagnostic. We find that the short-run discre pancy may have strong influence on the estimation of the parameter associated with the error-correction model. It is the error-correction variable that the short-run discrepancies can be incorporated through the error-correction mechanism.
文摘In 2013, World-Universe Model (WUM) proposed a principally different way to solve the problem of Newtonian Constant of Gravitation measurement precision. WUM revealed a self-consistent set of time-varying values of Primary Cosmological parameters of the World: Gravitation parameter, Hubble’s parameter, Age of the World, Temperature of the Microwave Background Radiation, and the concentration of Intergalactic plasma. Based on the inter-connectivity of these parameters, WUM solved the Missing Baryon problem and predicted the values of the following Cosmological parameters: gravitation G, concentration of Intergalactic plasma, relative energy density of protons in the Medium, and the minimum energy of photons, which were experimentally confirmed in 2015-2018. Between 2013 and 2018, the relative standard uncertainty of G measurements decreased x6. The set of values obtained by WUM was recommended for consideration in CODATA Recommended Values of the Fundamental Physical Constants 2014.