期刊文献+
共找到68篇文章
< 1 2 4 >
每页显示 20 50 100
A Study of Wind Statistics Through Auto-Regressive and Moving-Average (ARMA) Modeling 被引量:1
1
作者 John Z.YIM(尹彰) +1 位作者 ChunRen CHOU(周宗仁) 《China Ocean Engineering》 SCIE EI 2001年第1期61-72,共12页
Statistical properties of winds near the Taichung Harbour are investigated. The 26 years'incomplete data of wind speeds, measured on an hourly basis, are used as reference. The possibility of imputation using simu... Statistical properties of winds near the Taichung Harbour are investigated. The 26 years'incomplete data of wind speeds, measured on an hourly basis, are used as reference. The possibility of imputation using simulated results of the Auto-Regressive (AR), Moving-Average (MA), and/ or Auto-Regressive and Moving-Average (ARMA) models is studied. Predictions of the 25-year extreme wind speeds based upon the augmented data are compared with the original series. Based upon the results, predictions of the 50- and 100-year extreme wind speeds are then made. 展开更多
关键词 auto-regressive and moving-average (ARMA) modeling probability distributions extreme wind speeds
下载PDF
Auto-regressive模型在全国婴儿死亡率拟合中的应用 被引量:2
2
作者 刘松 李晓妹 +2 位作者 刘健 刘晓冬 李向云 《中国卫生统计》 CSCD 北大核心 2011年第4期366-368,共3页
目的分析我国1991~2007年的婴儿死亡率的变化规律,探讨Auto-regressive模型在非平稳时间序列数据拟合中的适用性和有效性。方法对我国婴儿死亡率数据序列的平稳性和纯随机性进行预处理,然后利用SAS程序拟合Auto-regressive模型,并根据... 目的分析我国1991~2007年的婴儿死亡率的变化规律,探讨Auto-regressive模型在非平稳时间序列数据拟合中的适用性和有效性。方法对我国婴儿死亡率数据序列的平稳性和纯随机性进行预处理,然后利用SAS程序拟合Auto-regressive模型,并根据决定系数R2评价其拟合效果。结果我国婴儿死亡率为非平稳时间序列,总体呈现随时间线性递减的长期趋势,同时又包含一定的随机信息,采用Auto-regressive模型拟合效果较好。结论 Auto-regressive模型可以用来拟合我国婴儿死亡率的数据,并可以推广应用到卫生领域中其他具有非平稳时间序列特征的数据,为相关卫生管理部门制定策略措施提供科学的理论依据。 展开更多
关键词 auto-regressive模型 婴儿死亡率 拟合
下载PDF
基于(残差)Auto-Regressive模型利用MATLAB解决经济非平稳时间序列的预测分析 被引量:2
3
作者 曾慧 郑彩萍 王涛涛 《佳木斯大学学报(自然科学版)》 CAS 2008年第1期71-74,共4页
利用(残差)Auto—Regressive模型对我国1978年—2005年的GDP进行建模与预测,显示出该拟合模型优于ARIMA模型,并运行MATLAB软件,实现了建模仿真的全过程,显示了MATLAB的强大科学计算与可视化功能.
关键词 (残差)auto-regressive 建模 预测 程序
下载PDF
Application of Seasonal Auto-regressive Integrated Moving Average Model in Forecasting the Incidence of Hand-foot-mouth Disease in Wuhan,China 被引量:16
4
作者 彭颖 余滨 +3 位作者 汪鹏 孔德广 陈邦华 杨小兵 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2017年第6期842-848,共7页
Outbreaks of hand-foot-mouth disease(HFMD) have occurred many times and caused serious health burden in China since 2008. Application of modern information technology to prediction and early response can be helpful ... Outbreaks of hand-foot-mouth disease(HFMD) have occurred many times and caused serious health burden in China since 2008. Application of modern information technology to prediction and early response can be helpful for efficient HFMD prevention and control. A seasonal auto-regressive integrated moving average(ARIMA) model for time series analysis was designed in this study. Eighty-four-month(from January 2009 to December 2015) retrospective data obtained from the Chinese Information System for Disease Prevention and Control were subjected to ARIMA modeling. The coefficient of determination(R^2), normalized Bayesian Information Criterion(BIC) and Q-test P value were used to evaluate the goodness-of-fit of constructed models. Subsequently, the best-fitted ARIMA model was applied to predict the expected incidence of HFMD from January 2016 to December 2016. The best-fitted seasonal ARIMA model was identified as(1,0,1)(0,1,1)12, with the largest coefficient of determination(R^2=0.743) and lowest normalized BIC(BIC=3.645) value. The residuals of the model also showed non-significant autocorrelations(P_(Box-Ljung(Q))=0.299). The predictions by the optimum ARIMA model adequately captured the pattern in the data and exhibited two peaks of activity over the forecast interval, including a major peak during April to June, and again a light peak for September to November. The ARIMA model proposed in this study can forecast HFMD incidence trend effectively, which could provide useful support for future HFMD prevention and control in the study area. Besides, further observations should be added continually into the modeling data set, and parameters of the models should be adjusted accordingly. 展开更多
关键词 hand-foot-mouth disease forecast surveillance modeling auto-regressive integrated moving average(ARIMA)
下载PDF
CONSTRUCTION OF POLYNOMIAL MATRIX USING BLOCK COEFFICIENT MATRIX REPRESENTATION AUTO-REGRESSIVE MOVING AVERAGE MODEL FOR ACTIVELY CONTROLLED STRUCTURES 被引量:1
5
作者 李春祥 周岱 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2004年第6期661-667,共7页
The polynomial matrix using the block coefficient matrix representation auto-regressive moving average(referred to as the PM-ARMA)model is constructed in this paper for actively controlled multi-degree-of-freedom(MDOF... The polynomial matrix using the block coefficient matrix representation auto-regressive moving average(referred to as the PM-ARMA)model is constructed in this paper for actively controlled multi-degree-of-freedom(MDOF)structures with time-delay through equivalently transforming the preliminary state space realization into the new state space realization.The PM-ARMA model is a more general formulation with respect to the polynomial using the coefficient representation auto-regressive moving average(ARMA)model due to its capability to cope with actively controlled structures with any given structural degrees of freedom and any chosen number of sensors and actuators.(The sensors and actuators are required to maintain the identical number.)under any dimensional stationary stochastic excitation. 展开更多
关键词 actively controlled MDOF structures stationary stochastic processes polynomial matrix auto-regressive moving average
下载PDF
基于Auto-Regressive的河北省旅游接待人数预测研究
6
作者 聂再冉 李志新 李志国 《应用数学进展》 2020年第10期1710-1721,共12页
旅游人数是发展旅游业的重要指标,对河北省未来接待旅游人数的预测一直受到河北省旅游局的重视。本文通过以1990年~2019年河北省旅游数据为依托,首先,从市场、景区、政策三个方面分析了河北省旅游业现状,然后进行了河北省历年来旅游接... 旅游人数是发展旅游业的重要指标,对河北省未来接待旅游人数的预测一直受到河北省旅游局的重视。本文通过以1990年~2019年河北省旅游数据为依托,首先,从市场、景区、政策三个方面分析了河北省旅游业现状,然后进行了河北省历年来旅游接待人数数据的平稳性和白噪声检验,分别运用非平稳时间序列的两种残差自回归模型方法(因变量关于时间的回归模型和延迟因变量回归模型)对以往河北省旅游接待人数建立模型。研究结果发现,前者模型拟合效果较好,并对未来旅游人数进行短期预测。最后为促进河北省旅游业的发展提出了一些相关建议。 展开更多
关键词 时间序列分析 残差自回归(auto-regressive) 旅游接待人数
下载PDF
Parametric SNR Estimation Based on Auto-Regressive Model in AWGN Channels 被引量:1
7
作者 Dan-Ping Bai Qun Wan Xian-Sheng Guo Yan Wang 《Journal of Electronic Science and Technology of China》 2008年第1期21-24,共4页
Signal-to-noise ratio(SNR)estimation for signal which can be modeled by Auto-regressive(AR)process is studied in this paper.First,the conventional frequency domain method is introduced to estimate the SNR for the ... Signal-to-noise ratio(SNR)estimation for signal which can be modeled by Auto-regressive(AR)process is studied in this paper.First,the conventional frequency domain method is introduced to estimate the SNR for the received signal in additive white Gauss noise(AWGN)channel.Then a parametric SNR estimation algorithm is proposed by taking advantage of the AR model information of the received signal.The simulation results show that the proposed parametric method has better performance than the conventional frequency doma in method in case of AWGN channel. 展开更多
关键词 auto-regressive model AWGN channel model information SNR (Signal-to-noise ratio) estimation.
下载PDF
RATE OF CONVERGENCE FOR MULTIPLE CHANGEPOINTS ESTIMATION OF MOVING-AVERAGE PROCESSES
8
作者 Li Yunxia Zhang Lixin 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2005年第4期416-422,共7页
In this paper, the least square estimator in the problem of multiple change points estimation is studied. Here, the moving-average processes of ALNQD sequence in the mean shifts are discussed. When the number of chang... In this paper, the least square estimator in the problem of multiple change points estimation is studied. Here, the moving-average processes of ALNQD sequence in the mean shifts are discussed. When the number of change points is known, the rate of convergence of change-points estimation is derived. The result is also true for p-mixing, φ-mixing, a-mixing, associated and negatively associated sequences under suitable conditions. 展开更多
关键词 mean shift multiple change points moving-average process ALNQD least square.
下载PDF
Optimal zero-crossing group selection method of the absolute gravimeter based on improved auto-regressive moving average model
9
作者 牟宗磊 韩笑 胡若 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期347-354,共8页
An absolute gravimeter is a precision instrument for measuring gravitational acceleration, which plays an important role in earthquake monitoring, crustal deformation, national defense construction, etc. The frequency... An absolute gravimeter is a precision instrument for measuring gravitational acceleration, which plays an important role in earthquake monitoring, crustal deformation, national defense construction, etc. The frequency of laser interference fringes of an absolute gravimeter gradually increases with the fall time. Data are sparse in the early stage and dense in the late stage. The fitting accuracy of gravitational acceleration will be affected by least-squares fitting according to the fixed number of zero-crossing groups. In response to this problem, a method based on Fourier series fitting is proposed in this paper to calculate the zero-crossing point. The whole falling process is divided into five frequency bands using the Hilbert transformation. The multiplicative auto-regressive moving average model is then trained according to the number of optimal zero-crossing groups obtained by the honey badger algorithm. Through this model, the number of optimal zero-crossing groups determined in each segment is predicted by the least-squares fitting. The mean value of gravitational acceleration in each segment is then obtained. The method can improve the accuracy of gravitational measurement by more than 25% compared to the fixed zero-crossing groups method. It provides a new way to improve the measuring accuracy of an absolute gravimeter. 展开更多
关键词 absolute gravimeter laser interference fringe Fourier series fitting honey badger algorithm mul-tiplicative auto-regressive moving average(MARMA)model
下载PDF
Precise Asymptotics in the Law of Large Numbers and the Law of Iterated Logarithm of Moving-Average Process Generated by ALNQD Sequences
10
作者 张勇 赵世舜 董志山 《Northeastern Mathematical Journal》 CSCD 2007年第6期549-562,共14页
In this paper, we discuss the precise asymptotics of moving-average process Xt =∞∑j=0 ajEt-j under some suitable conditions, where {εt, t∈ Z} is a sequence j=0 of stationary ALNQD random variables with mean zeros... In this paper, we discuss the precise asymptotics of moving-average process Xt =∞∑j=0 ajEt-j under some suitable conditions, where {εt, t∈ Z} is a sequence j=0 of stationary ALNQD random variables with mean zeros and finite variances. 展开更多
关键词 ALNQD random variable moving-average process precise asymptotic2000 MR subject classification: 60F15
下载PDF
Application of Auto-regressive Linear Model in Understanding the Effect of Climate on Malaria Vectors Dynamics in the Three Gorges Reservoir
11
作者 WANG Duo Quan GU Zheng Cheng +2 位作者 ZHENG Xiang GUO Yun TANG Lin Hua 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2014年第10期811-814,共4页
It is important to understand the dynamics of malaria vectors in implementing malaria control strategies. Six villages were selected from different sections in the Three Gorges Reservoir fc,r exploring the relationshi... It is important to understand the dynamics of malaria vectors in implementing malaria control strategies. Six villages were selected from different sections in the Three Gorges Reservoir fc,r exploring the relationship between the climatic |:actors and its malaria vector density from 1997 to 2007 using the auto-regressive linear model regressi^n method. The result indicated that both temperature and precipitation were better modeled as quadratic rather than linearly related to the density of Anopheles sinensis. 展开更多
关键词 Application of auto-regressive Linear Model in Understanding the Effect of Climate on Malaria Vectors Dynamics in the Three Gorges Reservoir AUTO
下载PDF
Settlement Prediction for Buildings Surrounding Foundation Pits Based on a Stationary Auto-regression Model 被引量:3
12
作者 TIAN Lin-ya HUA Xi-sheng 《Journal of China University of Mining and Technology》 EI 2007年第1期78-81,共4页
To ensure the safety of buildings surrounding foundation pits, a study was made on a settlement monitoring and trend prediction method. A statistical testing method for analyzing the stability of a settlement monitori... To ensure the safety of buildings surrounding foundation pits, a study was made on a settlement monitoring and trend prediction method. A statistical testing method for analyzing the stability of a settlement monitoring datum has been discussed. According to a comprehensive survey, data of 16 stages at operating control point, were verified by a standard t test to determine the stability of the operating control point. A stationary auto-regression model, AR(p), used for the observation point settlement prediction has been investigated. Given the 16 stages of the settlement data at an observation point, the applicability of this model was analyzed. Settlement of last four stages was predicted using the stationary auto-regression model AR (1); the maximum difference between predicted and measured values was 0.6 mm, indicating good prediction results of the model. Hence, this model can be applied to settlement predictions for buildings surrounding foundation pits. 展开更多
关键词 foundation pit BUILDING settlement monitoring datum stability stationary auto-regression model settlement prediction
下载PDF
A multi-scale second-order autoregressive recursive filter approach for the sea ice concentration analysis
13
作者 Lu Yang Xuefeng Zhang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第3期115-126,共12页
To effectively extract multi-scale information from observation data and improve computational efficiency,a multi-scale second-order autoregressive recursive filter(MSRF)method is designed.The second-order autoregress... To effectively extract multi-scale information from observation data and improve computational efficiency,a multi-scale second-order autoregressive recursive filter(MSRF)method is designed.The second-order autoregressive filter used in this study has been attempted to replace the traditional first-order recursive filter used in spatial multi-scale recursive filter(SMRF)method.The experimental results indicate that the MSRF scheme successfully extracts various scale information resolved by observations.Moreover,compared with the SMRF scheme,the MSRF scheme improves computational accuracy and efficiency to some extent.The MSRF scheme can not only propagate to a longer distance without the attenuation of innovation,but also reduce the mean absolute deviation between the reconstructed sea ice concentration results and observations reduced by about 3.2%compared to the SMRF scheme.On the other hand,compared with traditional first-order recursive filters using in the SMRF scheme that multiple filters are executed,the MSRF scheme only needs to perform two filter processes in one iteration,greatly improving filtering efficiency.In the two-dimensional experiment of sea ice concentration,the calculation time of the MSRF scheme is only 1/7 of that of SMRF scheme.This means that the MSRF scheme can achieve better performance with less computational cost,which is of great significance for further application in real-time ocean or sea ice data assimilation systems in the future. 展开更多
关键词 second-order auto-regressive filter multi-scale recursive filter sea ice concentration three-dimensional variational data assimilation
下载PDF
Localizing structural damage based on auto-regressive with exogenous input model parameters and residuals using a support vector machine based learning approach
14
作者 Burcu GUNES 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2024年第10期1492-1506,共15页
Machine learning algorithms operating in an unsupervised fashion has emerged as promising tools for detecting structural damage in an automated fashion.Its essence relies on selecting appropriate features to train the... Machine learning algorithms operating in an unsupervised fashion has emerged as promising tools for detecting structural damage in an automated fashion.Its essence relies on selecting appropriate features to train the model using the reference data set collected from the healthy structure and employing the trained model to identify outlier conditions representing the damaged state.In this paper,the coefficients and the residuals of the autoregressive model with exogenous input created using only the measured output signals are extracted as damage features.These features obtained at the baseline state for each sensor cluster are then utilized to train the one class support vector machine,an unsupervised classifier generating a decision function using only patterns belonging to this baseline state.Structural damage,once detected by the trained machine,a damage index based on comparison of the residuals between the trained class and the outlier state is implemented for localizing damage.The two-step damage assessment framework is first implemented on an eight degree-of-freedom numerical model with the effects of measurement noise integrated.Subsequently,vibration data collected from a one-story one-bay reinforced concrete frame inflicted with progressive levels of damage have been utilized to verify the accuracy and robustness of the proposed methodology. 展开更多
关键词 structural health monitoring damage localization auto-regressive with exogenous input models one-class support vector machine reinforced concrete frame
原文传递
Parameter Estimation of Time-Varying ARMA Model 被引量:3
15
作者 王文华 韩力 王文星 《Journal of Beijing Institute of Technology》 EI CAS 2004年第2期131-134,共4页
The auto-regressive moving-average (ARMA) model with time-varying parameters is analyzed. The time-varying parameters are assumed to be a linear combination of a set of basis time-varying functions, and the feedbac... The auto-regressive moving-average (ARMA) model with time-varying parameters is analyzed. The time-varying parameters are assumed to be a linear combination of a set of basis time-varying functions, and the feedback linear estimation algorithm is used to estimate the time-varying parameters of the ARMA model. This algorithm includes 2 linear least squares estimations and a linear filter. The influence of the order of basis time-(varying) functions on parameters estimation is analyzed. The method has the advantage of simple, saving computation time and storage space. Theoretical analysis and experimental results show the validity of this method. 展开更多
关键词 auto-regressive moving-average (ARMA) model feedback linear estimation basis time-varying function spectral estimation
下载PDF
关中平原渠井双灌区地下水循环对环境变化的响应 被引量:17
16
作者 李萍 魏晓妹 +1 位作者 降亚楠 冯东溥 《农业工程学报》 EI CAS CSCD 北大核心 2014年第18期123-131,共9页
为促进陕西关中平原渠井双灌区地下水良性循环,保障灌区水资源高效安全利用,以泾惠渠灌区为例,分析了灌区多年来地下水系统外部环境因素及地下水循环要素的变化特征,基于多变量时间序列CAR(controlled auto-regressive)模型建立了地下... 为促进陕西关中平原渠井双灌区地下水良性循环,保障灌区水资源高效安全利用,以泾惠渠灌区为例,分析了灌区多年来地下水系统外部环境因素及地下水循环要素的变化特征,基于多变量时间序列CAR(controlled auto-regressive)模型建立了地下水位动态对环境变化的响应模型,利用验证后的模型对灌区不同环境变化情景下的地下水位埋深进行了模拟。研究结果表明:降水、蒸发、渠首引水、渠井用水比例是影响灌区地下水循环的主要外部环境因素;降水量减少、蒸发量增加,地下水各项补给量减少、排泄量增加,使得地下水位逐年下降,近34 a累计下降11.8 m;在多年平均降水量情景Ⅰ下(近56 a均值:513 mm),维持灌区地下水良性循环的适宜渠井用水比例为1.53,在多年平均降水量减少5%,即降水情景Ⅱ下(487 mm),适宜渠井用水比例为1.61。环境变化下不同渠井用水方案的研究,有利于灌区地下水的良性循环,可为灌区制定高效安全用水对策提供依据。 展开更多
关键词 灌溉 模型 水分管理 地下水循环 泾惠渠灌区 多变量分析 CAR(Controlled auto-regressive)模型
下载PDF
基于广义逆矩阵的AR模型参数估计算法 被引量:1
17
作者 张莹 王太勇 黄国龙 《机械强度》 CAS CSCD 北大核心 2010年第6期890-893,共4页
AR(auto-regressive)模型是时序建模分析中常用的时间序列模型。在模型参数的最小二乘估计和定阶的过程中,要求线性方程组必须有解。针对这一问题,文中引入自相关系数矩阵对线性方程组进行化简,并提出基于广义逆矩阵理论的参数估计方法... AR(auto-regressive)模型是时序建模分析中常用的时间序列模型。在模型参数的最小二乘估计和定阶的过程中,要求线性方程组必须有解。针对这一问题,文中引入自相关系数矩阵对线性方程组进行化简,并提出基于广义逆矩阵理论的参数估计方法。该算法对线性方程组是否有解没有限制,无需事先判定,从而解决建模过程中线性方程组无解情况下的参数估计问题。实验证明该法可有效地对设备运行状态进行趋势预测,具有一定的工程意义。 展开更多
关键词 时间序列 AR(auto-regressive)模型 参数估计 广义逆矩阵
下载PDF
对数回归-ARMA周期预测模型及其应用 被引量:1
18
作者 赵凌 张健 陈涛 《水资源与水工程学报》 2010年第6期19-21,25,共4页
对成都市月供水量时序进行周期分析。在利用对数变换后的回归模型基础上,建立ARMA(1,5)时间序列模型,给出了月供水量时序的预测模型,并根据此模型对2010年全年月供水量进行预测。实例表明:本文提出的基于对数回归-ARMA月供水时序周期预... 对成都市月供水量时序进行周期分析。在利用对数变换后的回归模型基础上,建立ARMA(1,5)时间序列模型,给出了月供水量时序的预测模型,并根据此模型对2010年全年月供水量进行预测。实例表明:本文提出的基于对数回归-ARMA月供水时序周期预测模型,能更好地挖掘供水量时序的规律。 展开更多
关键词 auto-regressive模型 对数回归 季节效应 ARMA模型 城市供水量
下载PDF
我国人寿保险收入的时间序列分析 被引量:1
19
作者 解云 《内蒙古农业大学学报(自然科学版)》 CAS 北大核心 2011年第4期324-328,共5页
本文选用我国人寿保险公司2005.01-2010.12期间的月度原保险收入为样本,采用ARIMA模型和Auto-Regressive模型进行了时间序列分析,结果显示模型具有较好的预测效果,可为我国人寿保险的监管和决策提供参考。
关键词 人寿保险收入 ARIMA模型 auto-regressive模型 预测
下载PDF
中国人均GDP的时间序列模型比较分析 被引量:5
20
作者 符晓燕 杨娜娜 《商业时代》 北大核心 2011年第14期4-5,共2页
人均GDP是衡量一个国家经济发展和居民生活水平的重要指标。运用中国1978至2008年人均GDP数据建立ARIMA模型和Auto-Regressive模型,利用AIC和SBC准则比较分析选出最优模型对2009-2013年的人均GDP进行预测,整个过程都是通过SAS系统实现的。
关键词 ARIMA模型 auto-regressive模型 人均GDP增长
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部