In recent years,multiple-load automatic guided vehicle(AGV)is increasingly used in the logistics transportation fields,owing to the advantages of smaller fleet size and fewer occurrences of traffic congestion.However,...In recent years,multiple-load automatic guided vehicle(AGV)is increasingly used in the logistics transportation fields,owing to the advantages of smaller fleet size and fewer occurrences of traffic congestion.However,one main challenge lies in the deadlock-avoidance for the dispatching process of a multiple-load AGV system.To prevent the system from falling into a deadlock,a strategy of keeping the number of jobs in the system(NJIS)at a low level is adopted in most existing literatures.It is noteworthy that a low-level NJIS will make the processing machine easier to be starved,thereby reducing the system efficiency unavoidably.The motivation of the paper is to develop a deadlock-avoidance dispatching method for a multiple-load AGV system operating at a high NJIS level.Firstly,the deadlock-avoidance dispatching method is devised by incorporating a deadlock-avoidance strategy into a dispatching procedure that contains four sub-problems.In this strategy,critical tasks are recognized according to the status of workstation buffers,and then temporarily forbidden to avoid potential deadlocks.Secondly,three multiattribute dispatching rules are designed for system efficiency,where both the traveling distance and the buffer status are taken into account.Finally,a simulation system is developed to evaluate the performance of the proposed deadlock-avoidance strategy and dispatching rules at different NJIS levels.The experimental results demonstrate that our deadlock-avoidance dispatching method can improve the system efficiency at a high NJIS level and the adaptability to various system settings,while still avoiding potential deadlocks.展开更多
The high penetration of wind energy sources in power systems has substantially increased the demand for faster-ramping thermal units participating in the frequency regulation service.To fulfill the automatic generatio...The high penetration of wind energy sources in power systems has substantially increased the demand for faster-ramping thermal units participating in the frequency regulation service.To fulfill the automatic generation control(AGC)and compensate the influence of wind power fluctuations simultaneously,ramping capacity should be considered in the dispatch model of thermals.Meanwhile,conventional methods in this area do not take the impact of transmission loss into the dispatch model,or rely on offline network model and parameters,failing to reflect the real relationships between the wind farms and thermal generators.This paper proposes an online approach for AGC dispatch units considering the above issues.Firstly,the power loss sensitivity is online identified using recursive least square method based on the real-time data of phasor measurement units.It sets up power balance constraint and results in a more accurate dispatch model.Then,an improved multi-objective optimization model of dispatch is proposed and a connection is established between the thermal units with fast ramping capacity and the wind farms with rapid fluctuations.Genetic algorithm is used to solve the dispatch model.The proposed method is compared with conventional methods in simulation case in the IEEE 30-bus system.Finally,simulation results verify the validity and the feasibility of identification method and optimization model.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52005427,61973154)the National Defense Basic Scientific Research Program of China(No.JCKY2018605C004)+1 种基金the Natural Science Research Project of Jiangsu Higher Education Institutions(Nos.19KJB510013,18KJA460009)the Foundation of Graduate Innovation Center in Nanjing University of Aeronautics and Astronautics(No.KFJJ20190516)。
文摘In recent years,multiple-load automatic guided vehicle(AGV)is increasingly used in the logistics transportation fields,owing to the advantages of smaller fleet size and fewer occurrences of traffic congestion.However,one main challenge lies in the deadlock-avoidance for the dispatching process of a multiple-load AGV system.To prevent the system from falling into a deadlock,a strategy of keeping the number of jobs in the system(NJIS)at a low level is adopted in most existing literatures.It is noteworthy that a low-level NJIS will make the processing machine easier to be starved,thereby reducing the system efficiency unavoidably.The motivation of the paper is to develop a deadlock-avoidance dispatching method for a multiple-load AGV system operating at a high NJIS level.Firstly,the deadlock-avoidance dispatching method is devised by incorporating a deadlock-avoidance strategy into a dispatching procedure that contains four sub-problems.In this strategy,critical tasks are recognized according to the status of workstation buffers,and then temporarily forbidden to avoid potential deadlocks.Secondly,three multiattribute dispatching rules are designed for system efficiency,where both the traveling distance and the buffer status are taken into account.Finally,a simulation system is developed to evaluate the performance of the proposed deadlock-avoidance strategy and dispatching rules at different NJIS levels.The experimental results demonstrate that our deadlock-avoidance dispatching method can improve the system efficiency at a high NJIS level and the adaptability to various system settings,while still avoiding potential deadlocks.
基金This work is supported in part by Major State Basic Research Development Program of China(No.2012CB215206)National Natural Science Foundation of China(No.51107061).
文摘The high penetration of wind energy sources in power systems has substantially increased the demand for faster-ramping thermal units participating in the frequency regulation service.To fulfill the automatic generation control(AGC)and compensate the influence of wind power fluctuations simultaneously,ramping capacity should be considered in the dispatch model of thermals.Meanwhile,conventional methods in this area do not take the impact of transmission loss into the dispatch model,or rely on offline network model and parameters,failing to reflect the real relationships between the wind farms and thermal generators.This paper proposes an online approach for AGC dispatch units considering the above issues.Firstly,the power loss sensitivity is online identified using recursive least square method based on the real-time data of phasor measurement units.It sets up power balance constraint and results in a more accurate dispatch model.Then,an improved multi-objective optimization model of dispatch is proposed and a connection is established between the thermal units with fast ramping capacity and the wind farms with rapid fluctuations.Genetic algorithm is used to solve the dispatch model.The proposed method is compared with conventional methods in simulation case in the IEEE 30-bus system.Finally,simulation results verify the validity and the feasibility of identification method and optimization model.