Electric vehicle charging identification and positioning is critically important to achieving automatic charging.In terms of the problem of automatic charging for electric vehicles,a dual recognition and positioning m...Electric vehicle charging identification and positioning is critically important to achieving automatic charging.In terms of the problem of automatic charging for electric vehicles,a dual recognition and positioning method based on deep learning is proposed.The method is divided into two parts:global recognition and localization and local recognition and localization.In the specific implementation process,the collected pictures of electric vehicle charging attitude are classified and labeled.It is trained with the improved YOLOv4 networkmodel and the corresponding detectionmodel is obtained.The contour of the electric vehicle is extracted by the BiSeNet semantic segmentation algorithm.The minimum external rectangle is used for positioning of the electric vehicle.Based on the location relationship between the charging port and the electric vehicle,the rough location information of the charging port is obtained.The automatic charging equipment moves to the vicinity of the charging port,and the camera near the charging gun collects pictures of the charging port.The model is detected by the Hough circle,the KM algorithmis used for featurematching,and the homography matrix is used to solve the attitude.The results show that the dual identification and location method based on the improved YOLOv4 algorithm proposed in this paper can accurately locate the charging port.The accuracy of the charging connection can reach 80%.It provides an effective way to solve the problems of automatic charging identification and positioning of electric vehicles and has strong engineering practical value.展开更多
Local geometric information and discontinuity features are key aspects of the analysis of the evolution and failure mechanisms of unstable rock blocks in rock tunnels.This study demonstrates the integration of terrest...Local geometric information and discontinuity features are key aspects of the analysis of the evolution and failure mechanisms of unstable rock blocks in rock tunnels.This study demonstrates the integration of terrestrial laser scanning(TLS)with distinct element method for rock mass characterization and stability analysis in tunnels.TLS records detailed geometric information of the surrounding rock mass by scanning and collecting the positions of millions of rock surface points without contact.By conducting a fuzzy K-means method,a discontinuity automatic identification algorithm was developed,and a method for obtaining the geometric parameters of discontinuities was proposed.This method permits the user to visually identify each discontinuity and acquire its spatial distribution features(e.g.occurrences,spac-ings,trace lengths)in great detail.Compared with hand mapping in conventional geotechnical surveys,the geometric information of discontinuities obtained by this approach is more accurate and the iden-tification is more efficient.Then,a discrete fracture network with the same statistical characteristics as the actual discontinuities was generated with the distinct element method,and a representative nu-merical model of the jointed surrounding rock mass was established.By means of numerical simulation,potential unstable rock blocks were assessed,and failure mechanisms were analyzed.This method was applied to detection and assessment of unstable rock blocks in the spillway and sand flushing tunnel of the Hongshiyan hydropower project after a collapse.The results show that the noncontact detection of blocks was more labor-saving with lower safety risks compared with manual surveys,and the stability assessment was more reliable since the numerical model built by this method was more consistent with the distribution characteristics of actual joints.This study can provide a reference for geological survey and unstable rock block hazard mitigation in tunnels subjected to complex geology and active rockfalls.展开更多
As modern communication technology advances apace,the digital communication signals identification plays an important role in cognitive radio networks,the communication monitoring and management systems.AI has become ...As modern communication technology advances apace,the digital communication signals identification plays an important role in cognitive radio networks,the communication monitoring and management systems.AI has become a promising solution to this problem due to its powerful modeling capability,which has become a consensus in academia and industry.However,because of the data-dependence and inexplicability of AI models and the openness of electromagnetic space,the physical layer digital communication signals identification model is threatened by adversarial attacks.Adversarial examples pose a common threat to AI models,where well-designed and slight perturbations added to input data can cause wrong results.Therefore,the security of AI models for the digital communication signals identification is the premise of its efficient and credible applications.In this paper,we first launch adversarial attacks on the end-to-end AI model for automatic modulation classifi-cation,and then we explain and present three defense mechanisms based on the adversarial principle.Next we present more detailed adversarial indicators to evaluate attack and defense behavior.Finally,a demonstration verification system is developed to show that the adversarial attack is a real threat to the digital communication signals identification model,which should be paid more attention in future research.展开更多
We present a path morphology method to separate total rock pore space into matrix, fractures and vugs and derive their pore structure spectrum. Thus, we can achieve fine pore evaluation in fracture–vug reservoirs bas...We present a path morphology method to separate total rock pore space into matrix, fractures and vugs and derive their pore structure spectrum. Thus, we can achieve fine pore evaluation in fracture–vug reservoirs based on electric imaging logging data. We automatically identify and extract fracture–vug information from the electric imaging images by adopting a path morphological operator that remains flexible enough to fit rectilinear and slightly curved structures because they are independent of the structuring element shape. The Otsu method was used to extract fracture–vug information from the background noise caused by the matrix. To accommodate the differences in scale and form of the different target regions,including fracture and vug path, operators with different lengths were selected for their recognition and extraction at the corresponding scale. Polynomial and elliptic functions are used to fit the extracted fractures and vugs, respectively, and the fracture–vug parameters are deduced from the fitted edge. Finally, test examples of numerical simulation data and several measured well data have been provided for the verification of the effectiveness and adaptability of the path morphology method in the application of electric imaging logging data processing. This also provides algorithm support for the fine evaluation of fracture–vug reservoirs.展开更多
Modal parameters, including fundamental frequencies, damping ratios, and mode shapes, could be used to evaluate the health condition of structures. Automatic modal parameter identification, which plays an essential ro...Modal parameters, including fundamental frequencies, damping ratios, and mode shapes, could be used to evaluate the health condition of structures. Automatic modal parameter identification, which plays an essential role in realtime structural health monitoring, has become a popular topic in recent years. In this study, an automatic modal parameter identification procedure for high arch dams is proposed. The proposed procedure is implemented by combining the densitybased spatial clustering of applications with noise(DBSCAN) algorithm and the stochastic subspace identification(SSI). The 210-m-high Dagangshan Dam is investigated as an example to verify the feasibility of the procedure. The results show that the DBSCAN algorithm is robust enough to interpret the stabilization diagram from SSI and may avoid outline modes. This leads to the proposed procedure obtaining a better performance than the partitioned clustering and hierarchical clustering algorithms. In addition, the errors of the identified frequencies of the arch dam are within 4%, and the identified mode shapes are in agreement with those obtained from the finite element model, which implies that the proposed procedure is accurate enough to use in modal parameter identification. The procedure is feasible for online modal parameter identification and modal tracking of arch dams.展开更多
High-frequency surface wave radar(HFSWR) and automatic identification system(AIS) are the two most important sensors used for vessel tracking.The HFSWR can be applied to tracking all vessels in a detection area,wh...High-frequency surface wave radar(HFSWR) and automatic identification system(AIS) are the two most important sensors used for vessel tracking.The HFSWR can be applied to tracking all vessels in a detection area,while the AIS is usually used to verify the information of cooperative vessels.Because of interference from sea clutter,employing single-frequency HFSWR for vessel tracking may obscure vessels located in the blind zones of Bragg peaks.Analyzing changes in the detection frequencies constitutes an effective method for addressing this deficiency.A solution consisting of vessel fusion tracking is proposed using dual-frequency HFSWR data calibrated by the AIS.Since different systematic biases exist between HFSWR frequency measurements and AIS measurements,AIS information is used to estimate and correct the HFSWR systematic biases at each frequency.First,AIS point measurements for cooperative vessels are associated with the HFSWR measurements using a JVC assignment algorithm.From the association results of the cooperative vessels,the systematic biases in the dualfrequency HFSWR data are estimated and corrected.Then,based on the corrected dual-frequency HFSWR data,the vessels are tracked using a dual-frequency fusion joint probabilistic data association(JPDA)-unscented Kalman filter(UKF) algorithm.Experimental results using real-life detection data show that the proposed method is efficient at tracking vessels in real time and can improve the tracking capability and accuracy compared with tracking processes involving single-frequency data.展开更多
The aim of this research is to develop an algorithm and application that can perform real-time monitoring of the safety operation of offshore platforms and subsea gas pipelines as well as determine the need for ship i...The aim of this research is to develop an algorithm and application that can perform real-time monitoring of the safety operation of offshore platforms and subsea gas pipelines as well as determine the need for ship inspection using data obtained from automatic identification system(AIS).The research also focuses on the integration of shipping database,AIS data,and others to develop a prototype for designing a real-time monitoring system of offshore platforms and pipelines.A simple concept is used in the development of this prototype,which is achieved by using an overlaying map that outlines the coordinates of the offshore platform and subsea gas pipeline with the ship’s coordinates(longitude/latitude)as detected by AIS.Using such information,we can then build an early warning system(EWS)relayed through short message service(SMS),email,or other means when the ship enters the restricted and exclusion zone of platforms and pipelines.The ship inspection system is developed by combining several attributes.Then,decision analysis software is employed to prioritize the vessel’s four attributes,including ship age,ship type,classification,and flag state.Results show that the EWS can increase the safety level of offshore platforms and pipelines,as well as the efficient use of patrol boats in monitoring the safety of the facilities.Meanwhile,ship inspection enables the port to prioritize the ship to be inspected in accordance with the priority ranking inspection score.展开更多
To relieve traffic congestion in urban rail transit stations,a new identification method of crowded passenger flow based on automatic fare collection data is proposed.First,passenger travel characteristics are analyze...To relieve traffic congestion in urban rail transit stations,a new identification method of crowded passenger flow based on automatic fare collection data is proposed.First,passenger travel characteristics are analyzed by observing the temporal distribution of inflow passengers each hour and the spatial distribution concerning cross-section passenger flow.Secondly,the identification method of crowded passenger flow is proposed to calculate the threshold via the probability density function fitted by Matlab and classify the early-warning situation based on the threshold obtained.Finally,a case study of Xinjiekou station is conducted to prove the validity and practicability of the proposed method.Compared to the traditional methods,the proposed comprehensive method can remove defects such as efficiency and delay.Furthermore,the proposed method is suitable for other rail transit companies equipped with automatic fare collection systems.展开更多
The satellite-based automatic identification system (AIS) receiver has to encounter the frequency offset caused by the Doppler effect and the oscillator instability. This paper proposes a non-coherent sequence detecti...The satellite-based automatic identification system (AIS) receiver has to encounter the frequency offset caused by the Doppler effect and the oscillator instability. This paper proposes a non-coherent sequence detection scheme for the satellite-based AIS signal transmitted over the white Gaussian noise channel. Based on the maximum likelihood estimation and a Viterbi decoder, the proposed scheme is capable of tolerating a frequency offset up to 5% of the symbol rate. The complexity of the proposed scheme is reduced by the state-complexity reduction, which is based on per-survivor processing. Simulation results prove that the proposed non-coherent sequence detection scheme has high robustness to frequency offset compared to the relative scheme when messages collision exists.展开更多
Aiming at the potential presence of mixing automatic identification system(AIS) signals,a new demodulation scheme was proposed for separating other interfering signals in satellite systems.The combined iterative cross...Aiming at the potential presence of mixing automatic identification system(AIS) signals,a new demodulation scheme was proposed for separating other interfering signals in satellite systems.The combined iterative cross-correlation demodulation scheme,referred to as CICCD,yielded a set of single short signals based on the prior information of AIS,after the frequency,code rate and modulation index were estimated.It demodulates the corresponding short codes according to the maximum peak of cross-correlation,which is simple and easy to implement.Numerical simulations show that the bit error rate of proposed algorithm improves by about 40% compared with existing ones,and about 3 dB beyond the standard AIS receiver.In addition,the proposed demodulation scheme shows the satisfying performance and engineering value in mixing AIS environment and can also perform well in low signal-to-noise conditions.展开更多
There is an urgent need for the development of a method that can undertake rapid, effective, and accurate monitoring and identification of fog by satellite remote sensing, since heavy fog can cause enormous disasters ...There is an urgent need for the development of a method that can undertake rapid, effective, and accurate monitoring and identification of fog by satellite remote sensing, since heavy fog can cause enormous disasters to China’s national economy and people's lives and property in the urban and coastal areas. In this paper, the correlative relationship between the reflectivity of land surface and clouds in different time phases is found, based on the analysis of the radiative and satellite-based spectral characteristics of fog. Through calculation and analyses of the relative variability of the reflectivity in the images, the threshold to identify quasi-fog areas is generated automatically. Furthermore, using the technique of quick image run-length encoding, and in combination with such practical methods as analyzing texture and shape fractures, smoothness, and template characteristics, the automatic identification of fog and fog-cloud separation using meteorological satellite remote sensing images are studied, with good results in application.展开更多
基金supported by Guangdong Province Key Research and Development Project(2019B090909001)National Natural Science Foundation of China(52175236)+1 种基金the Natural Science Foundation of China(Grant 51705268)China Postdoctoral Science Foundation Funded Project(Grant 2017M612191).
文摘Electric vehicle charging identification and positioning is critically important to achieving automatic charging.In terms of the problem of automatic charging for electric vehicles,a dual recognition and positioning method based on deep learning is proposed.The method is divided into two parts:global recognition and localization and local recognition and localization.In the specific implementation process,the collected pictures of electric vehicle charging attitude are classified and labeled.It is trained with the improved YOLOv4 networkmodel and the corresponding detectionmodel is obtained.The contour of the electric vehicle is extracted by the BiSeNet semantic segmentation algorithm.The minimum external rectangle is used for positioning of the electric vehicle.Based on the location relationship between the charging port and the electric vehicle,the rough location information of the charging port is obtained.The automatic charging equipment moves to the vicinity of the charging port,and the camera near the charging gun collects pictures of the charging port.The model is detected by the Hough circle,the KM algorithmis used for featurematching,and the homography matrix is used to solve the attitude.The results show that the dual identification and location method based on the improved YOLOv4 algorithm proposed in this paper can accurately locate the charging port.The accuracy of the charging connection can reach 80%.It provides an effective way to solve the problems of automatic charging identification and positioning of electric vehicles and has strong engineering practical value.
基金support of the National Natural Science Foundation of China(Grant No.42102316)the Open Project of the Technology Innovation Center for Geological Environment Monitoring of Ministry of Natural Resources of China(Grant No.2022KFK1212005).
文摘Local geometric information and discontinuity features are key aspects of the analysis of the evolution and failure mechanisms of unstable rock blocks in rock tunnels.This study demonstrates the integration of terrestrial laser scanning(TLS)with distinct element method for rock mass characterization and stability analysis in tunnels.TLS records detailed geometric information of the surrounding rock mass by scanning and collecting the positions of millions of rock surface points without contact.By conducting a fuzzy K-means method,a discontinuity automatic identification algorithm was developed,and a method for obtaining the geometric parameters of discontinuities was proposed.This method permits the user to visually identify each discontinuity and acquire its spatial distribution features(e.g.occurrences,spac-ings,trace lengths)in great detail.Compared with hand mapping in conventional geotechnical surveys,the geometric information of discontinuities obtained by this approach is more accurate and the iden-tification is more efficient.Then,a discrete fracture network with the same statistical characteristics as the actual discontinuities was generated with the distinct element method,and a representative nu-merical model of the jointed surrounding rock mass was established.By means of numerical simulation,potential unstable rock blocks were assessed,and failure mechanisms were analyzed.This method was applied to detection and assessment of unstable rock blocks in the spillway and sand flushing tunnel of the Hongshiyan hydropower project after a collapse.The results show that the noncontact detection of blocks was more labor-saving with lower safety risks compared with manual surveys,and the stability assessment was more reliable since the numerical model built by this method was more consistent with the distribution characteristics of actual joints.This study can provide a reference for geological survey and unstable rock block hazard mitigation in tunnels subjected to complex geology and active rockfalls.
基金supported by the National Natural Science Foundation of China(61771154)the Fundamental Research Funds for the Central Universities(3072022CF0601)supported by Key Laboratory of Advanced Marine Communication and Information Technology,Ministry of Industry and Information Technology,Harbin Engineering University,Harbin,China.
文摘As modern communication technology advances apace,the digital communication signals identification plays an important role in cognitive radio networks,the communication monitoring and management systems.AI has become a promising solution to this problem due to its powerful modeling capability,which has become a consensus in academia and industry.However,because of the data-dependence and inexplicability of AI models and the openness of electromagnetic space,the physical layer digital communication signals identification model is threatened by adversarial attacks.Adversarial examples pose a common threat to AI models,where well-designed and slight perturbations added to input data can cause wrong results.Therefore,the security of AI models for the digital communication signals identification is the premise of its efficient and credible applications.In this paper,we first launch adversarial attacks on the end-to-end AI model for automatic modulation classifi-cation,and then we explain and present three defense mechanisms based on the adversarial principle.Next we present more detailed adversarial indicators to evaluate attack and defense behavior.Finally,a demonstration verification system is developed to show that the adversarial attack is a real threat to the digital communication signals identification model,which should be paid more attention in future research.
基金granted access to projects supported by the National Major Fundamental Research Program of China ‘‘On basic research problems in applied geophysics for deep oil and gas fields’’(Grant Number 2013CB228605)CNPC Science and Technology Project(Grant Number 2016A-3303)and CNPC Logging Project(Grant Number 2017E-15)
文摘We present a path morphology method to separate total rock pore space into matrix, fractures and vugs and derive their pore structure spectrum. Thus, we can achieve fine pore evaluation in fracture–vug reservoirs based on electric imaging logging data. We automatically identify and extract fracture–vug information from the electric imaging images by adopting a path morphological operator that remains flexible enough to fit rectilinear and slightly curved structures because they are independent of the structuring element shape. The Otsu method was used to extract fracture–vug information from the background noise caused by the matrix. To accommodate the differences in scale and form of the different target regions,including fracture and vug path, operators with different lengths were selected for their recognition and extraction at the corresponding scale. Polynomial and elliptic functions are used to fit the extracted fractures and vugs, respectively, and the fracture–vug parameters are deduced from the fitted edge. Finally, test examples of numerical simulation data and several measured well data have been provided for the verification of the effectiveness and adaptability of the path morphology method in the application of electric imaging logging data processing. This also provides algorithm support for the fine evaluation of fracture–vug reservoirs.
基金National Natural Science Foundation of China under Grant Nos. 51725901 and 51639006。
文摘Modal parameters, including fundamental frequencies, damping ratios, and mode shapes, could be used to evaluate the health condition of structures. Automatic modal parameter identification, which plays an essential role in realtime structural health monitoring, has become a popular topic in recent years. In this study, an automatic modal parameter identification procedure for high arch dams is proposed. The proposed procedure is implemented by combining the densitybased spatial clustering of applications with noise(DBSCAN) algorithm and the stochastic subspace identification(SSI). The 210-m-high Dagangshan Dam is investigated as an example to verify the feasibility of the procedure. The results show that the DBSCAN algorithm is robust enough to interpret the stabilization diagram from SSI and may avoid outline modes. This leads to the proposed procedure obtaining a better performance than the partitioned clustering and hierarchical clustering algorithms. In addition, the errors of the identified frequencies of the arch dam are within 4%, and the identified mode shapes are in agreement with those obtained from the finite element model, which implies that the proposed procedure is accurate enough to use in modal parameter identification. The procedure is feasible for online modal parameter identification and modal tracking of arch dams.
基金The National Natural Science Foundation of China under contract No.61362002the Marine Scientific Research Special Funds for Public Welfare of China under contract No.201505002
文摘High-frequency surface wave radar(HFSWR) and automatic identification system(AIS) are the two most important sensors used for vessel tracking.The HFSWR can be applied to tracking all vessels in a detection area,while the AIS is usually used to verify the information of cooperative vessels.Because of interference from sea clutter,employing single-frequency HFSWR for vessel tracking may obscure vessels located in the blind zones of Bragg peaks.Analyzing changes in the detection frequencies constitutes an effective method for addressing this deficiency.A solution consisting of vessel fusion tracking is proposed using dual-frequency HFSWR data calibrated by the AIS.Since different systematic biases exist between HFSWR frequency measurements and AIS measurements,AIS information is used to estimate and correct the HFSWR systematic biases at each frequency.First,AIS point measurements for cooperative vessels are associated with the HFSWR measurements using a JVC assignment algorithm.From the association results of the cooperative vessels,the systematic biases in the dualfrequency HFSWR data are estimated and corrected.Then,based on the corrected dual-frequency HFSWR data,the vessels are tracked using a dual-frequency fusion joint probabilistic data association(JPDA)-unscented Kalman filter(UKF) algorithm.Experimental results using real-life detection data show that the proposed method is efficient at tracking vessels in real time and can improve the tracking capability and accuracy compared with tracking processes involving single-frequency data.
文摘The aim of this research is to develop an algorithm and application that can perform real-time monitoring of the safety operation of offshore platforms and subsea gas pipelines as well as determine the need for ship inspection using data obtained from automatic identification system(AIS).The research also focuses on the integration of shipping database,AIS data,and others to develop a prototype for designing a real-time monitoring system of offshore platforms and pipelines.A simple concept is used in the development of this prototype,which is achieved by using an overlaying map that outlines the coordinates of the offshore platform and subsea gas pipeline with the ship’s coordinates(longitude/latitude)as detected by AIS.Using such information,we can then build an early warning system(EWS)relayed through short message service(SMS),email,or other means when the ship enters the restricted and exclusion zone of platforms and pipelines.The ship inspection system is developed by combining several attributes.Then,decision analysis software is employed to prioritize the vessel’s four attributes,including ship age,ship type,classification,and flag state.Results show that the EWS can increase the safety level of offshore platforms and pipelines,as well as the efficient use of patrol boats in monitoring the safety of the facilities.Meanwhile,ship inspection enables the port to prioritize the ship to be inspected in accordance with the priority ranking inspection score.
基金The National Key Research and Development Program of China(No.2016YFE0206800)
文摘To relieve traffic congestion in urban rail transit stations,a new identification method of crowded passenger flow based on automatic fare collection data is proposed.First,passenger travel characteristics are analyzed by observing the temporal distribution of inflow passengers each hour and the spatial distribution concerning cross-section passenger flow.Secondly,the identification method of crowded passenger flow is proposed to calculate the threshold via the probability density function fitted by Matlab and classify the early-warning situation based on the threshold obtained.Finally,a case study of Xinjiekou station is conducted to prove the validity and practicability of the proposed method.Compared to the traditional methods,the proposed comprehensive method can remove defects such as efficiency and delay.Furthermore,the proposed method is suitable for other rail transit companies equipped with automatic fare collection systems.
文摘The satellite-based automatic identification system (AIS) receiver has to encounter the frequency offset caused by the Doppler effect and the oscillator instability. This paper proposes a non-coherent sequence detection scheme for the satellite-based AIS signal transmitted over the white Gaussian noise channel. Based on the maximum likelihood estimation and a Viterbi decoder, the proposed scheme is capable of tolerating a frequency offset up to 5% of the symbol rate. The complexity of the proposed scheme is reduced by the state-complexity reduction, which is based on per-survivor processing. Simulation results prove that the proposed non-coherent sequence detection scheme has high robustness to frequency offset compared to the relative scheme when messages collision exists.
基金Project(9140C860304) supported by the National Defense Key Laboratory Foundation of China
文摘Aiming at the potential presence of mixing automatic identification system(AIS) signals,a new demodulation scheme was proposed for separating other interfering signals in satellite systems.The combined iterative cross-correlation demodulation scheme,referred to as CICCD,yielded a set of single short signals based on the prior information of AIS,after the frequency,code rate and modulation index were estimated.It demodulates the corresponding short codes according to the maximum peak of cross-correlation,which is simple and easy to implement.Numerical simulations show that the bit error rate of proposed algorithm improves by about 40% compared with existing ones,and about 3 dB beyond the standard AIS receiver.In addition,the proposed demodulation scheme shows the satisfying performance and engineering value in mixing AIS environment and can also perform well in low signal-to-noise conditions.
基金Key research project "Research of Shanghai City and Costal Heavy Fog Remote Sensing Detecting and Warning System" of Science and Technology Commission of Shanghai Municipality (075115011)
文摘There is an urgent need for the development of a method that can undertake rapid, effective, and accurate monitoring and identification of fog by satellite remote sensing, since heavy fog can cause enormous disasters to China’s national economy and people's lives and property in the urban and coastal areas. In this paper, the correlative relationship between the reflectivity of land surface and clouds in different time phases is found, based on the analysis of the radiative and satellite-based spectral characteristics of fog. Through calculation and analyses of the relative variability of the reflectivity in the images, the threshold to identify quasi-fog areas is generated automatically. Furthermore, using the technique of quick image run-length encoding, and in combination with such practical methods as analyzing texture and shape fractures, smoothness, and template characteristics, the automatic identification of fog and fog-cloud separation using meteorological satellite remote sensing images are studied, with good results in application.