This paper is devoted to a study of geometric properties of AR(q) nonlinear regression models. We present geometric frameworks for regression parameter space and autoregression parameter space respectively based on th...This paper is devoted to a study of geometric properties of AR(q) nonlinear regression models. We present geometric frameworks for regression parameter space and autoregression parameter space respectively based on the weighted inner product by fisher information matrix. Several geometric properties related to statistical curvatures are given for the models. The results of this paper extended the work of Bates & Watts(1980,1988)[1.2] and Seber & Wild (1989)[3].展开更多
Based on the weekly closing price of Shenzhen Integrated Index, this article studies the volatility of Shenzhen Stock Market using three different models: Logistic, AR(1) and AR(2). The time-variable parameters o...Based on the weekly closing price of Shenzhen Integrated Index, this article studies the volatility of Shenzhen Stock Market using three different models: Logistic, AR(1) and AR(2). The time-variable parameters of Logistic regression model is estimated by using both the index smoothing method and the time-variable parameter estimation method. And both the AR(1) model and the AR(2) model of zero-mean series of the weekly dosing price and its zero-mean series of volatility rate are established based on the analysis results of zero-mean series of the weekly closing price, Six common statistical methods for error prediction are used to test the predicting results. These methods are: mean error (ME), mean absolute error (MAE), root mean squared error (RMSE), mean absolute percentage error (MAPE), Akaike's information criterion (AIC), and Bayesian information criterion (BIC). The investigation shows that AR(1) model exhibits the best predicting result, whereas AR(2) model exhibits predicting results that is intermediate between AR(1) model and the Logistic regression model.展开更多
In this paper, we have studied the waveforms of background noise in a seismograph and set up an AR model to characterize them. We then complete the modeling and the automatic recognition program. Finally, we provide t...In this paper, we have studied the waveforms of background noise in a seismograph and set up an AR model to characterize them. We then complete the modeling and the automatic recognition program. Finally, we provide the results from automatic recognition and the manual recognition of the first motion for 25 underground explosions.展开更多
基金Supported by the NSSFC(02BTJ001) Supported by the NSSFC(04BTJ002) Supported by the Grant for Post-Doctorial Fellows in Southeast University
文摘This paper is devoted to a study of geometric properties of AR(q) nonlinear regression models. We present geometric frameworks for regression parameter space and autoregression parameter space respectively based on the weighted inner product by fisher information matrix. Several geometric properties related to statistical curvatures are given for the models. The results of this paper extended the work of Bates & Watts(1980,1988)[1.2] and Seber & Wild (1989)[3].
基金The research is supported by the National Natural Science Foundation of China (60574069)the Soft Science Foundation of Guangdong Province (2005B70101044)
文摘Based on the weekly closing price of Shenzhen Integrated Index, this article studies the volatility of Shenzhen Stock Market using three different models: Logistic, AR(1) and AR(2). The time-variable parameters of Logistic regression model is estimated by using both the index smoothing method and the time-variable parameter estimation method. And both the AR(1) model and the AR(2) model of zero-mean series of the weekly dosing price and its zero-mean series of volatility rate are established based on the analysis results of zero-mean series of the weekly closing price, Six common statistical methods for error prediction are used to test the predicting results. These methods are: mean error (ME), mean absolute error (MAE), root mean squared error (RMSE), mean absolute percentage error (MAPE), Akaike's information criterion (AIC), and Bayesian information criterion (BIC). The investigation shows that AR(1) model exhibits the best predicting result, whereas AR(2) model exhibits predicting results that is intermediate between AR(1) model and the Logistic regression model.
文摘In this paper, we have studied the waveforms of background noise in a seismograph and set up an AR model to characterize them. We then complete the modeling and the automatic recognition program. Finally, we provide the results from automatic recognition and the manual recognition of the first motion for 25 underground explosions.