期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Gait recognition based on Wasserstein generating adversarial image inpainting network 被引量:4
1
作者 XIA Li-min WANG Hao GUO Wei-ting 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第10期2759-2770,共12页
Aiming at the problem of small area human occlusion in gait recognition,a method based on generating adversarial image inpainting network was proposed which can generate a context consistent image for gait occlusion a... Aiming at the problem of small area human occlusion in gait recognition,a method based on generating adversarial image inpainting network was proposed which can generate a context consistent image for gait occlusion area.In order to reduce the effect of noise on feature extraction,the stacked automatic encoder with robustness was used.In order to improve the ability of gait classification,the sparse coding was used to express and classify the gait features.Experiments results showed the effectiveness of the proposed method in comparison with other state-of-the-art methods on the public databases CASIA-B and TUM-GAID for gait recognition. 展开更多
关键词 gait recognition image inpainting generating adversarial network stacking automatic encoder
下载PDF
Prediction of Disease Transmission Risk in Universities Based on SEIR and Multi-hidden Layer Back-propagation Neural Network Model
2
作者 Jiangjiang Li Lijuan Feng 《IJLAI Transactions on Science and Engineering》 2024年第1期24-31,共8页
Against the background of regular epidemic prevention and control,in order to ensure the return of teachers to work,students to return to school and safe operation of schools,the risk of disease transmission is analyz... Against the background of regular epidemic prevention and control,in order to ensure the return of teachers to work,students to return to school and safe operation of schools,the risk of disease transmission is analyzed in key areas such as university canoons,auditoriums,teaching buildings and dormitories.The risk model of epidemic transmission in key regions of universities is established based on the improved SEIR model,considering the four groups of people,namely susceptible,latent,infected and displaced,and their mutual transformation relationship.After feature post-processing,the selected feature parameters are processed with monotone non-decreasing and smoothing,and used as noise-free samples of stacked sparse denoising automatic coding network to train the network.Then,the feature vectors after dimensionality reduction of the stacked sparse denoising automatic coding network are used as the input of the multi-hidden layer back-propagation neural network,and these features are used as tags to carry out fitting training for the network.The results show that the implementation of control measures can reduce the number of contacts between infected people and susceptible people,reduce the transmission rate of single contact,and reduce the peak number of infected people and latent people by 61%and 72%respectively,effectively controlling the disease spread in key regions of universities.Our method is able to accurately predict the number of infections. 展开更多
关键词 Disease transmission SEIR model PREDICTION Stacked sparse denoising automatic coding network
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部