To improve the accuracy of capacity analysis and prediction for the aircraft assembly stations,an approach for calculating the effective working hour(EWH)of automatic assembly equipment is introduced by using the dyna...To improve the accuracy of capacity analysis and prediction for the aircraft assembly stations,an approach for calculating the effective working hour(EWH)of automatic assembly equipment is introduced by using the dynamic mixed Weibull distribution(DMWD)model.Firstly,according to the features of aircraft assembling,a DMWD model considering the dynamic reliability of multiple subsystems and their synthetic effects on the whole equipment is established.A typical automatic drilling&riveting machine is selected as the research object,and the dynamic weights of reliability of three subsystems are modeled and solved.Subsequently the unknown parameters of the DMWD model are estimated based on maximum likelihood estimation(MLE)and Newton-Raphson method.Finally,the EWH of an automatic station is defined and modeled by using the solved dynamic reliability function.Based on the experimental study on a real automatic drilling&riveting machine from a wing panel assembly station,it is shown that the proposed DMWD and EWH models could effectively calculate the equipment reliability with full consideration of its multiple subsystems.The DMWD model is more suitable for improving the solution precision of EWH than the traditional three-parameter Weibull distribution.展开更多
Three-dimensional(3D) circular loom is a textile machine to produce 3D tubular fiber composites reinforcement.The shedding wheels system is an important part of 3D circular loom to schedule the shedding order which ha...Three-dimensional(3D) circular loom is a textile machine to produce 3D tubular fiber composites reinforcement.The shedding wheels system is an important part of 3D circular loom to schedule the shedding order which has several types.A computer aided design system is proposed,which is implemented in SolidWorks,and provides a tool for practicing designers to design the sheddling wheel system more efficiently.展开更多
ln this research, the whole contact-type large-scale sow house with fer-mentation bed was designed. The planning area of the entire piggery was 5 700 m2 with workplace and green belts. The sow house was 93 m long and ...ln this research, the whole contact-type large-scale sow house with fer-mentation bed was designed. The planning area of the entire piggery was 5 700 m2 with workplace and green belts. The sow house was 93 m long and 33 m wide, a total of 3 069 m2, including office area of 60 m2 and aisle area of 107 m2. The fer-mentation bed had an area of 2 902 m2 with length of 88.7 m and width of 27.7 m. lts area accounted for 95% of the total area of sow house. The fermentation mattress had a depth of 80 cm, and had a volume of 2 321 m3, equivalent to 733 t of coconut chaff and rice chaff. On a large fermentation bed, the areas for boars, replacement gilts, pregnant sows, obstetric tables, nursery pigs, etc. were designed. The large-scale sow house with fermentation bed was equipped with the automatic feeding system, automatic sprinkler system, automatic positioning column for preg-nant sows, sows' obstetric table system, fanning wet curtain cooling system, video monitoring system, environmental monitoring (light, temperature, water, humidity, CO2, NH3) and automatic control system. Every farming area was equipped with feeding trough and water trough. The water though was fixed with overflow pipe for removing the extra water. The house could hold 500-head sows. Each sow occu-pied 4.9 m2 of the fermentation bed in average. The designed sow house had a maximum annual output of 10 000 piglets.展开更多
High-speed machine tool working table restrains the machining accuracy and machining efficiency,so lightweight design of the table is an important issue.In nature,leaf has developed a plate structure that maximizes th...High-speed machine tool working table restrains the machining accuracy and machining efficiency,so lightweight design of the table is an important issue.In nature,leaf has developed a plate structure that maximizes the surface-to-volume ratio.It can be seen as a plate structure stiffened by veins.Compared with a high-speed machine tool working table,leaf veins play a role of supporting part which is similar to that of stiffening ribs,and they can provide some new design ideas for lightweight design of the table.In this paper,distribution rules of leaf veins were investigated,and a structural bionic design for the table was achieved based on regulation of leaf veins.First,statistical analysis on geometric structure of leaf veins was carried out,and four distribution rules were obtained.Then,relevant mechanical models were developed and analyzed in finite element software.Based on the results from mechanical analysis on those relevant models,the four distribution rules were translated into the design rules and a structural bionic design for the working table was achieved.Both simulation and experimental verifications were carried out,and results showed that the average displacement of the working table was reduced by about 33.9%.展开更多
基金This work was supported in part by the Fundamental Research Funds for the Central Universities(Nos.N170303009,N180703007),China.
文摘To improve the accuracy of capacity analysis and prediction for the aircraft assembly stations,an approach for calculating the effective working hour(EWH)of automatic assembly equipment is introduced by using the dynamic mixed Weibull distribution(DMWD)model.Firstly,according to the features of aircraft assembling,a DMWD model considering the dynamic reliability of multiple subsystems and their synthetic effects on the whole equipment is established.A typical automatic drilling&riveting machine is selected as the research object,and the dynamic weights of reliability of three subsystems are modeled and solved.Subsequently the unknown parameters of the DMWD model are estimated based on maximum likelihood estimation(MLE)and Newton-Raphson method.Finally,the EWH of an automatic station is defined and modeled by using the solved dynamic reliability function.Based on the experimental study on a real automatic drilling&riveting machine from a wing panel assembly station,it is shown that the proposed DMWD and EWH models could effectively calculate the equipment reliability with full consideration of its multiple subsystems.The DMWD model is more suitable for improving the solution precision of EWH than the traditional three-parameter Weibull distribution.
文摘Three-dimensional(3D) circular loom is a textile machine to produce 3D tubular fiber composites reinforcement.The shedding wheels system is an important part of 3D circular loom to schedule the shedding order which has several types.A computer aided design system is proposed,which is implemented in SolidWorks,and provides a tool for practicing designers to design the sheddling wheel system more efficiently.
基金Supported by Chinese Ministry of Science and Technology(2012DFA31120)Natural Science Foundation of China(NSFC)(31370059)+2 种基金948 Project of Chinese Ministry of Agriculture(2011-G25)973 Program Earlier Research Project(2011CB111607)Project of Agriculture Science and Technology Achievement Transformation(2010GB2C400220)
文摘ln this research, the whole contact-type large-scale sow house with fer-mentation bed was designed. The planning area of the entire piggery was 5 700 m2 with workplace and green belts. The sow house was 93 m long and 33 m wide, a total of 3 069 m2, including office area of 60 m2 and aisle area of 107 m2. The fer-mentation bed had an area of 2 902 m2 with length of 88.7 m and width of 27.7 m. lts area accounted for 95% of the total area of sow house. The fermentation mattress had a depth of 80 cm, and had a volume of 2 321 m3, equivalent to 733 t of coconut chaff and rice chaff. On a large fermentation bed, the areas for boars, replacement gilts, pregnant sows, obstetric tables, nursery pigs, etc. were designed. The large-scale sow house with fermentation bed was equipped with the automatic feeding system, automatic sprinkler system, automatic positioning column for preg-nant sows, sows' obstetric table system, fanning wet curtain cooling system, video monitoring system, environmental monitoring (light, temperature, water, humidity, CO2, NH3) and automatic control system. Every farming area was equipped with feeding trough and water trough. The water though was fixed with overflow pipe for removing the extra water. The house could hold 500-head sows. Each sow occu-pied 4.9 m2 of the fermentation bed in average. The designed sow house had a maximum annual output of 10 000 piglets.
基金supported by the National Natural Science Foundation of China (Grant No. 50975012)the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20091102110022)
文摘High-speed machine tool working table restrains the machining accuracy and machining efficiency,so lightweight design of the table is an important issue.In nature,leaf has developed a plate structure that maximizes the surface-to-volume ratio.It can be seen as a plate structure stiffened by veins.Compared with a high-speed machine tool working table,leaf veins play a role of supporting part which is similar to that of stiffening ribs,and they can provide some new design ideas for lightweight design of the table.In this paper,distribution rules of leaf veins were investigated,and a structural bionic design for the table was achieved based on regulation of leaf veins.First,statistical analysis on geometric structure of leaf veins was carried out,and four distribution rules were obtained.Then,relevant mechanical models were developed and analyzed in finite element software.Based on the results from mechanical analysis on those relevant models,the four distribution rules were translated into the design rules and a structural bionic design for the working table was achieved.Both simulation and experimental verifications were carried out,and results showed that the average displacement of the working table was reduced by about 33.9%.