The paper starts with a brief overview to the necessity of sheet metal forming simulation and the complexity of automobile panel forming, then leads to finite element analysis (FEA) which is a powerful simulation too...The paper starts with a brief overview to the necessity of sheet metal forming simulation and the complexity of automobile panel forming, then leads to finite element analysis (FEA) which is a powerful simulation tool for analyzing complex three-dimensional sheet metal forming problems. The theory and features of the dynamic explicit finite element methods are introduced and the available various commercial finite element method codes used for sheet metal forming simulation in the world are discussed,and the civil and international status quo of automobile panel simulation as well. The front door outer panel of one certain new automobile is regarded as one example that the dynamic explicit FEM code Dynaform is used for the simulation of the front door outer panel forming process. Process defects such as ruptures are predicted. The improving methods can be given according to the simulation results. Foreground of sheet metal forming simulation is outlined.展开更多
Dent resistance of automobile body panels is an important property for automobile design and manufacture, but the study on this aspect is not still profound. This study is to summarize the testing methods and physical...Dent resistance of automobile body panels is an important property for automobile design and manufacture, but the study on this aspect is not still profound. This study is to summarize the testing methods and physical significations of static and dynamic dent resistance of automobile body panels combined with the author's study, and to analyze the dent behaviors in the round. Several influence factors on dent resistance are expatiated including the mechanical properties of materials, stress states after forming, bake hardening ability, modulus, methods of testing, and structure of specimens and so on. The automotive lightweight and application of high strength steel sheets and aluminum alloys sheets are analyzed, and the significance of testing of dent resistance, especially for dynamic dent resistance of auto-panels, and the finite element simulation analysis are emphasized. To explain the physical phenomenon of dent behaviors, the latest and concerned study results are also discussed. According to this study, a dent resistance test and evaluation standard of Society of Automotive Engineers of China for automotive body panel is presented and is being carried out, and an industry conference is hold to discuss the working-out of the standard, a primary schedule of this standard is confirmed now. The study can guide the further testing and study of dent resistant of auto-panels.展开更多
The specific distribution characteristics of inclusions along with the sliver defect were analyzed in detail to explain the formation mechanism of the sliver defect on the automobile exposed panel surface.A quantitati...The specific distribution characteristics of inclusions along with the sliver defect were analyzed in detail to explain the formation mechanism of the sliver defect on the automobile exposed panel surface.A quantitative electrolysis method was used to compare and evaluate the three-dimensional morphology,size,composition,quantity,and distribution of inclusions in the defect and non-defect zone of automobile exposed panel.The Al2O3 inclusions were observed to be aggregated or chain-like shape along with the sliver defect of about 3–10μm.The aggregation sections of the Al2O3 inclusions are distributed discretely along the rolling direction,with a spacing of 3–7 mm,a length of 6–7 mm,and a width of about 3 mm.The inclusion area part is 0.04%–0.16%with an average value of 0.08%,the inclusion number density is 40 mm−2 and the inclusion average spacing is 25.13μm.The inclusion spacing is approximately 40–160μm,with an average value of 68.76μm in chain-like inclusion parts.The average area fraction and number density of inclusions in the non-defect region were reduced to about 0.002%and 1–2 mm^−2,respectively,with the inclusion spacing of 400μm and the size of Al2O3 being 1–3μm.展开更多
In view of the automobile panel's features of complex shapes, the higher requirements of appearance surface quality, and the more accurate mechanical model for CAE simulation etc, a kind of measurement method for lar...In view of the automobile panel's features of complex shapes, the higher requirements of appearance surface quality, and the more accurate mechanical model for CAE simulation etc, a kind of measurement method for large size measurement was presented. The method was composed of digital close-range industrial photogrammetry technology and computer binocular vision technology, it could measure workpieces quickly and precisely. First, XJ- TUDP software, which was a kind of photogrammetry software, figured out un-coded points and coded-points which fixed on the surface of a large part and took a solid base for the fusion of many pieces point clouds. Second, based on XJTUOM, which was a kind of 3D dense point cloud optical measure software, imported global landmarks points came from XJTUDP into XJTUOM, and point clouds can be assembled automatically. 3D data of the object surface may be acquired precisely by means of this method. Finally, an automobile door was taken for example and the experimental data was combined so we can see that the developed system possesses better accuracy and it can ad- dress the feature of a large workpiece.展开更多
As the manufacturing industry is facing increasingly serious environmental problems, because of which carbon tax policies are being implemented, choosing the optimum cutting parameters during the machining process is ...As the manufacturing industry is facing increasingly serious environmental problems, because of which carbon tax policies are being implemented, choosing the optimum cutting parameters during the machining process is crucial for automobile panel dies in order to achieve synergistic minimization of the environment impact, product quality, and processing efficiency. This paper presents a processing task-based evaluation method to optimize the cutting parameters, considering the trade-off among carbon emissions, surface roughness, and processing time. Three objective models and their relationships with the cutting parameters were obtained through input–output, response surface, and theoretical analyses, respectively. Examples of cylindrical turning were applied to achieve a central composite design(CCD), and relative validation experiments were applied to evaluate the proposed method. The experiments were conducted on the CAK50135 di lathe cutting of AISI 1045 steel, and NSGA-Ⅱ was used to obtain the Pareto fronts of the three objectives. Based on the TOPSIS method, the Pareto solution set was ranked to find the optimal solution to evaluate and select the optimal cutting parameters. An S/N ratio analysis and contour plots were applied to analyze the influence of each decision variable on the optimization objective. Finally, the changing rules of a single factor for each objective were analyzed. The results demonstrate that the proposed method is effective in finding the trade-off among the three objectives and obtaining reasonable application ranges of the cutting parameters from Pareto fronts.展开更多
We point out that the finite dement method offers a great functional improvement for analyzing the stamp forming process of an automobile panel. Using the finite element theory and the simulation method of sheet stamp...We point out that the finite dement method offers a great functional improvement for analyzing the stamp forming process of an automobile panel. Using the finite element theory and the simulation method of sheet stamping forming, the element model of sheet forming is built based on software HyperMesh, and the simulation of the product's sheet forming process is analyzed based on software Dynaform. A series of simulation results are obtained. It is clear that the simulation results from the theoretical basis for the product's die design and are useful for selecting process parameters.展开更多
The dashboard is the most important part of the large inner decoration of cars;it should not only have enough strength and rigidity,but also have a harmonious body model which can unify the theme.Besides,it needs to r...The dashboard is the most important part of the large inner decoration of cars;it should not only have enough strength and rigidity,but also have a harmonious body model which can unify the theme.Besides,it needs to reach the goal of lightweight.In order to achieve these three goals,the car dashboard is made by engineering-plastics and adopts the technology of injection moulding.This paper introduces the keys of design and the advanced technology of large injection moulding for car dashboard.展开更多
文摘The paper starts with a brief overview to the necessity of sheet metal forming simulation and the complexity of automobile panel forming, then leads to finite element analysis (FEA) which is a powerful simulation tool for analyzing complex three-dimensional sheet metal forming problems. The theory and features of the dynamic explicit finite element methods are introduced and the available various commercial finite element method codes used for sheet metal forming simulation in the world are discussed,and the civil and international status quo of automobile panel simulation as well. The front door outer panel of one certain new automobile is regarded as one example that the dynamic explicit FEM code Dynaform is used for the simulation of the front door outer panel forming process. Process defects such as ruptures are predicted. The improving methods can be given according to the simulation results. Foreground of sheet metal forming simulation is outlined.
基金supported by National Hi-tech Research and Development Program of China(863 Program, Grant No. 2007AA03z551)Chongqing Municipal Technology Project of China (Grant No. 2007AA4008-4-4)
文摘Dent resistance of automobile body panels is an important property for automobile design and manufacture, but the study on this aspect is not still profound. This study is to summarize the testing methods and physical significations of static and dynamic dent resistance of automobile body panels combined with the author's study, and to analyze the dent behaviors in the round. Several influence factors on dent resistance are expatiated including the mechanical properties of materials, stress states after forming, bake hardening ability, modulus, methods of testing, and structure of specimens and so on. The automotive lightweight and application of high strength steel sheets and aluminum alloys sheets are analyzed, and the significance of testing of dent resistance, especially for dynamic dent resistance of auto-panels, and the finite element simulation analysis are emphasized. To explain the physical phenomenon of dent behaviors, the latest and concerned study results are also discussed. According to this study, a dent resistance test and evaluation standard of Society of Automotive Engineers of China for automotive body panel is presented and is being carried out, and an industry conference is hold to discuss the working-out of the standard, a primary schedule of this standard is confirmed now. The study can guide the further testing and study of dent resistant of auto-panels.
基金This work was financially supported by the National Natural Science Foundation of China(No.U1960202).
文摘The specific distribution characteristics of inclusions along with the sliver defect were analyzed in detail to explain the formation mechanism of the sliver defect on the automobile exposed panel surface.A quantitative electrolysis method was used to compare and evaluate the three-dimensional morphology,size,composition,quantity,and distribution of inclusions in the defect and non-defect zone of automobile exposed panel.The Al2O3 inclusions were observed to be aggregated or chain-like shape along with the sliver defect of about 3–10μm.The aggregation sections of the Al2O3 inclusions are distributed discretely along the rolling direction,with a spacing of 3–7 mm,a length of 6–7 mm,and a width of about 3 mm.The inclusion area part is 0.04%–0.16%with an average value of 0.08%,the inclusion number density is 40 mm−2 and the inclusion average spacing is 25.13μm.The inclusion spacing is approximately 40–160μm,with an average value of 68.76μm in chain-like inclusion parts.The average area fraction and number density of inclusions in the non-defect region were reduced to about 0.002%and 1–2 mm^−2,respectively,with the inclusion spacing of 400μm and the size of Al2O3 being 1–3μm.
基金supported by the National 863 Projects under Grant No.2007AA04Z124
文摘In view of the automobile panel's features of complex shapes, the higher requirements of appearance surface quality, and the more accurate mechanical model for CAE simulation etc, a kind of measurement method for large size measurement was presented. The method was composed of digital close-range industrial photogrammetry technology and computer binocular vision technology, it could measure workpieces quickly and precisely. First, XJ- TUDP software, which was a kind of photogrammetry software, figured out un-coded points and coded-points which fixed on the surface of a large part and took a solid base for the fusion of many pieces point clouds. Second, based on XJTUOM, which was a kind of 3D dense point cloud optical measure software, imported global landmarks points came from XJTUDP into XJTUOM, and point clouds can be assembled automatically. 3D data of the object surface may be acquired precisely by means of this method. Finally, an automobile door was taken for example and the experimental data was combined so we can see that the developed system possesses better accuracy and it can ad- dress the feature of a large workpiece.
基金Supported by National Hi-tech Research and Development Program of China(863 Program,Grant No.2014AA041503)National Natural Science Foundation of China(Key Program,Grant No.51235003)
文摘As the manufacturing industry is facing increasingly serious environmental problems, because of which carbon tax policies are being implemented, choosing the optimum cutting parameters during the machining process is crucial for automobile panel dies in order to achieve synergistic minimization of the environment impact, product quality, and processing efficiency. This paper presents a processing task-based evaluation method to optimize the cutting parameters, considering the trade-off among carbon emissions, surface roughness, and processing time. Three objective models and their relationships with the cutting parameters were obtained through input–output, response surface, and theoretical analyses, respectively. Examples of cylindrical turning were applied to achieve a central composite design(CCD), and relative validation experiments were applied to evaluate the proposed method. The experiments were conducted on the CAK50135 di lathe cutting of AISI 1045 steel, and NSGA-Ⅱ was used to obtain the Pareto fronts of the three objectives. Based on the TOPSIS method, the Pareto solution set was ranked to find the optimal solution to evaluate and select the optimal cutting parameters. An S/N ratio analysis and contour plots were applied to analyze the influence of each decision variable on the optimization objective. Finally, the changing rules of a single factor for each objective were analyzed. The results demonstrate that the proposed method is effective in finding the trade-off among the three objectives and obtaining reasonable application ranges of the cutting parameters from Pareto fronts.
基金High-tech Key Laboratory Research Project of Jiangsu Province under Contract No.BM2007201
文摘We point out that the finite dement method offers a great functional improvement for analyzing the stamp forming process of an automobile panel. Using the finite element theory and the simulation method of sheet stamping forming, the element model of sheet forming is built based on software HyperMesh, and the simulation of the product's sheet forming process is analyzed based on software Dynaform. A series of simulation results are obtained. It is clear that the simulation results from the theoretical basis for the product's die design and are useful for selecting process parameters.
文摘The dashboard is the most important part of the large inner decoration of cars;it should not only have enough strength and rigidity,but also have a harmonious body model which can unify the theme.Besides,it needs to reach the goal of lightweight.In order to achieve these three goals,the car dashboard is made by engineering-plastics and adopts the technology of injection moulding.This paper introduces the keys of design and the advanced technology of large injection moulding for car dashboard.