期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Survey on autonomous task scheduling technology for Earth observation satellites 被引量:1
1
作者 WU Jian CHEN Yuning +2 位作者 HE Yongming XING Lining HU Yangrui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第6期1176-1189,共14页
How to make use of limited onboard resources for complex and heavy space tasks has attracted much attention.With the continuous improvement on satellite payload capacity and the increasing complexity of observation re... How to make use of limited onboard resources for complex and heavy space tasks has attracted much attention.With the continuous improvement on satellite payload capacity and the increasing complexity of observation requirements,the importance of satellite autonomous task scheduling research has gradually increased.This article first gives the problem description and mathematical model for the satellite autonomous task scheduling and then follows the steps of"satellite autonomous task scheduling,centralized autonomous collaborative task scheduling architecture,distributed autonomous collaborative task scheduling architecture,solution algorithm".Finally,facing the complex and changeable environment situation,this article proposes the future direction of satellite autonomous task scheduling. 展开更多
关键词 satellite autonomous task scheduling centralized architecture distributed architecture
下载PDF
Machine learning and price-based load scheduling for an optimal IoT control in the smart and frugal home
2
作者 Rachneet Kaur Clara Schaye +4 位作者 Kevin Thompson Daniel C.Yee Rachel Zilz R.S.Sreenivas Richard B.Sowers 《Energy and AI》 2021年第1期49-63,共15页
We pose and study a scheduling problem for an electric load to develop an Internet of Things(IoT)control system for power appliances,which takes advantage of real-time dynamic energy pricing.Using historical pricing d... We pose and study a scheduling problem for an electric load to develop an Internet of Things(IoT)control system for power appliances,which takes advantage of real-time dynamic energy pricing.Using historical pricing data from a large U.S.power supplier,we study and compare several dynamic scheduling policies,which can be implemented in a smart home to activate a major appliance(dishwasher,washing machine,clothes dryer)at an optimal time of the day,to minimize electricity costs.We formulate our scheduling task as a supervised machine learning classification problem which activates the load during one of two preferred time bins.The features used in the machine learning problem are hourly market,spot and day-ahead prices along with delayed label of the prior day.We find that boosting tree-based algorithms outperform any other classification approach with measurable reduction of energy costs over certain types of naive and static policies.We observe that the delayed label has most predictive power across features,followed,on average,by spot,hourly market,and day-ahead energy prices.We further discuss implementation issues using a micro controller system coupled with cloud-based serverless computing and dynamic data storage.Our test system includes an interactive voice interface via an intelligent personal assistant. 展开更多
关键词 Power markets Load scheduling Machine learning Feature analysis Internet of Things Autonomous scheduling Serverless computing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部