期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
Noise reduction of acoustic Doppler velocimeter data based on Kalman filtering and autoregressive moving average models
1
作者 Chuanjiang Huang Fangli Qiao Hongyu Ma 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2020年第12期106-113,共8页
Oceanic turbulence measurements made by an acoustic Doppler velocimeter(ADV)suffer from noise that potentially affects the estimates of turbulence statistics.This study examines the abilities of Kalman filtering and a... Oceanic turbulence measurements made by an acoustic Doppler velocimeter(ADV)suffer from noise that potentially affects the estimates of turbulence statistics.This study examines the abilities of Kalman filtering and autoregressive moving average models to eliminate noise in ADV velocity datasets of laboratory experiments and offshore observations.Results show that the two methods have similar performance in ADV de-noising,and both effectively reduce noise in ADV velocities,even in cases of high noise.They eliminate the noise floor at high frequencies of the velocity spectra,leading to a longer range that effectively fits the Kolmogorov-5/3 slope at midrange frequencies.After de-noising adopting the two methods,the values of the mean velocity are almost unchanged,while the root-mean-square horizontal velocities and thus turbulent kinetic energy decrease appreciably in these experiments.The Reynolds stress is also affected by high noise levels,and de-noising thus reduces uncertainties in estimating the Reynolds stress. 展开更多
关键词 noise Kalman filtering autoregressive moving average model TURBULENCE acoustic Doppler velocimeter
下载PDF
Autoregressive moving average model for matrix time series
2
作者 Shujin Wu Ping Bi 《Statistical Theory and Related Fields》 CSCD 2023年第4期318-335,共18页
In the paper,the autoregressive moving average model for matrix time series(MARMA)is inves-tigated.The properties of the MARMA model are investigated by using the conditional least square estimation,the conditional ma... In the paper,the autoregressive moving average model for matrix time series(MARMA)is inves-tigated.The properties of the MARMA model are investigated by using the conditional least square estimation,the conditional maximum likelihood estimation,the projection theorem in Hilbert space and the decomposition technique of time series,which include necessary and suf-ficient conditions for stationarity and invertibility,model parameter estimation,model testing and model forecasting. 展开更多
关键词 Matrix time series autoregressive moving average model bilinear model statistical inference
原文传递
Deep Learning-Based Stock Price Prediction Using LSTM Model
3
作者 Jiayi Mao Zhiyong Wang 《Proceedings of Business and Economic Studies》 2024年第5期176-185,共10页
The stock market is a vital component of the broader financial system,with its dynamics closely linked to economic growth.The challenges associated with analyzing and forecasting stock prices have persisted since the ... The stock market is a vital component of the broader financial system,with its dynamics closely linked to economic growth.The challenges associated with analyzing and forecasting stock prices have persisted since the inception of financial markets.By examining historical transaction data,latent opportunities for profit can be uncovered,providing valuable insights for both institutional and individual investors to make more informed decisions.This study focuses on analyzing historical transaction data from four banks to predict closing price trends.Various models,including decision trees,random forests,and Long Short-Term Memory(LSTM)networks,are employed to forecast stock price movements.Historical stock transaction data serves as the input for training these models,which are then used to predict upward or downward stock price trends.The study’s empirical results indicate that these methods are effective to a degree in predicting stock price movements.The LSTM-based deep neural network model,in particular,demonstrates a commendable level of predictive accuracy.This conclusion is reached following a thorough evaluation of model performance,highlighting the potential of LSTM models in stock market forecasting.The findings offer significant implications for advancing financial forecasting approaches,thereby improving the decision-making capabilities of investors and financial institutions. 展开更多
关键词 autoregressive integrated moving average(ARIMA)model Long Short-Term Memory(LSTM)network Forecasting Stock market
下载PDF
Influencing Factors and Prediction of Risk of Returning to Ecological Poverty in Liupan Mountain Region,China
4
作者 CUI Yunxia LIU Xiaopeng +2 位作者 JIANG Chunmei TIAN Rujun NIU Qingrui 《Chinese Geographical Science》 SCIE CSCD 2024年第3期420-435,共16页
China has resolved its overall regional poverty in 2020 by attaining moderate societal prosperity.The country has entered a new development stage designed to achieve its second centenary goal.However,ecological fragil... China has resolved its overall regional poverty in 2020 by attaining moderate societal prosperity.The country has entered a new development stage designed to achieve its second centenary goal.However,ecological fragility and risk susceptibility have increased the risk of returning to ecological poverty.In this paper,the Liupan Mountain Region of China was used as a case study,and the counties were used as the scale to reveal the spatiotempora differentiation and influcing factors of the risk of returning to poverty in study area.The indicator data for returning to ecological poverty from 2011-2020 were collected and summarized in three dimensions:ecological,economic and social.The autoregressive integrated moving average model(ARIMA)time series and exponential smoothing method(ES)were used to predict the multidimensional indicators of returning to ecological poverty for 61 counties(districts)in the Liupan Mountain Region for 2021-2030.The back propagation neural network(BPNN)and geographic information system(GIS)were used to generate the spatial distribution and time variation for the index of the risk of returning to ecological poverty(RREP index).The results show that 1)ecological factors were the main factors in the risk of returning to ecological poverty in Liupan Mountain Region.2)The RREP index for the 61 counties(districts)exhibited a downward trend from 2021-2030.The RREP index declined more in medium-and high-risk areas than in low-risk areas.From 2021 to 2025,the RREP index exhibited a slight downward trend.From 2026 to2030,the RREP index was expected to decline faster,especially from 2029-2030.3)Based on the RREP index,it can be roughly divided into three types,namely,the high-risk areas,the medium-risk areas,and the low-risk areas.The natural resource conditions in lowrisk areas of returning to ecological poverty,were better than those in medium-and high-risk areas. 展开更多
关键词 risk of returning to ecological poverty autoregressive integrated moving average model(ARIMA) exponential smoothing model back propagation neural network(BPNN) Liupan Mountain Region China
下载PDF
Multi-objective optimization scheduling for new energy power system considering energy storage participation 被引量:7
5
作者 YUN Yun-yun DONG Hai-ying +2 位作者 CHEN Zhao HUANG Rong DING Kun 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2020年第4期365-372,共8页
For the low utilization rate of photovoltaic power generation,taking a new energy power system constisting of concentrating solar power(CSP),photovoltaic power(PP)and battery energy storage system as an example,a mult... For the low utilization rate of photovoltaic power generation,taking a new energy power system constisting of concentrating solar power(CSP),photovoltaic power(PP)and battery energy storage system as an example,a multi-objective optimization scheduling strategy considering energy storage participation is proposed.Firstly,the new energy power system model is established,and the PP scenario generation and reduction frame based on the autoregressive moving average model and Kantorovich-distance is proposed.Then,based on the optimization goal of the system operation cost minimization and the PP output power consumption maximization,the multi-objective optimization scheduling model is established.Finally,the simulation results show that introducing energy storage into the system can effectively reduce the system operation cost and improve the utilization efficiency of PP. 展开更多
关键词 new energy power system multi-objective optimization energy storage participation operation cost autoregressive moving average model
下载PDF
Damage Localization of Marine Risers Using Time Series of Vibration Signals 被引量:1
6
作者 LIU Hao YANG Hezhen LIU Fushun 《Journal of Ocean University of China》 SCIE CAS 2014年第5期777-781,共5页
Based on dynamic response signals a damage detection algorithm is developed for marine risers. Damage detection methods based on numerous modal properties have encountered issues in the researches in offshore oil comm... Based on dynamic response signals a damage detection algorithm is developed for marine risers. Damage detection methods based on numerous modal properties have encountered issues in the researches in offshore oil community. For example, significant increase in structure mass due to marine plant/animal growth and changes in modal properties by equipment noise are not the result of damage for riser structures. In an attempt to eliminate the need to determine modal parameters, a data-based method is developed. The implementation of the method requires that vibration data are first standardized to remove the influence of different loading conditions and the autoregressive moving average(ARMA) model is used to fit vibration response signals. In addition, a damage feature factor is introduced based on the autoregressive(AR) parameters. After that, the Euclidean distance between ARMA models is subtracted as a damage indicator for damage detection and localization and a top tensioned riser simulation model with different damage scenarios is analyzed using the proposed method with dynamic acceleration responses of a marine riser as sensor data. Finally, the influence of measured noise is analyzed. According to the damage localization results, the proposed method provides accurate damage locations of risers and is robust to overcome noise effect. 展开更多
关键词 marine risers structure damage detection dynamic response autoregressive moving average model noise signal
下载PDF
Gross errors identification and correction of in-vehicle MEMS gyroscope based on time series analysis 被引量:3
7
作者 陈伟 李旭 张为公 《Journal of Southeast University(English Edition)》 EI CAS 2013年第2期170-174,共5页
This paper presents a novel approach to identify and correct the gross errors in the microelectromechanical system (MEMS) gyroscope used in ground vehicles by means of time series analysis. According to the characte... This paper presents a novel approach to identify and correct the gross errors in the microelectromechanical system (MEMS) gyroscope used in ground vehicles by means of time series analysis. According to the characteristics of autocorrelation function (ACF) and partial autocorrelation function (PACF), an autoregressive integrated moving average (ARIMA) model is roughly constructed. The rough model is optimized by combining with Akaike's information criterion (A/C), and the parameters are estimated based on the least squares algorithm. After validation testing, the model is utilized to forecast the next output on the basis of the previous measurement. When the difference between the measurement and its prediction exceeds the defined threshold, the measurement is identified as a gross error and remedied by its prediction. A case study on the yaw rate is performed to illustrate the developed algorithm. Experimental results demonstrate that the proposed approach can effectively distinguish gross errors and make some reasonable remedies. 展开更多
关键词 microelectromechanical system (MEMS)gyroscope autoregressive integrated moving average(ARIMA) model time series analysis gross errors
下载PDF
Time-series analysis of monthly rainfall data for the Mahanadi River Basin, India 被引量:2
8
作者 Janhabi Meher Ramakar Jha 《Research in Cold and Arid Regions》 CSCD 2013年第1期73-84,共12页
Time series analysis has two goals, modeling random mechanisms and predicting future series using historical data. In the present work, a uni-variate time series autoregressive integrated moving average (ARIMA) mode... Time series analysis has two goals, modeling random mechanisms and predicting future series using historical data. In the present work, a uni-variate time series autoregressive integrated moving average (ARIMA) model has been developed for (a) simulating and forecasting mean rainfall, obtained using Theissen weights; over the Mahanadi River Basin in India, and (b) simula^ag and forecasting mean rainfall at 38 rain-gauge stations in district towns across the basin. For the analysis, monthly rainfall data of each district town for the years 1901-2002 (102 years) were used. Theissen weights were obtained over the basin and mean monthly rainfall was estimated. The trend and seasonality observed in ACF and PACF plots of rainfall data were removed using power transformation (a=0.5) and first order seasonal differencing prior to the development of the ARIMA model. Interestingly, the AR1MA model (1,0,0)(0,1,1)12 developed here was found to be most suitable for simulating and forecasting mean rainfall over the Mahanadi River Basin and for all 38 district town rain-gauge stations, separately. The Akaike Information Criterion (AIC), good- ness of fit (Chi-square), R2 (coefficient of determination), MSE (mean square error) and MAE (mea absolute error) were used to test the validity and applicability of the developed ARIMA model at different stages. This model is considered appropriate to forecast the monthly rainfall for the upcoming 12 years in each district town to assist decision makers and policy makers establish priorities for water demand, storage, distribution, and disaster management. 展开更多
关键词 Akaike Information Criterion autoregressive integrated moving average model goodness of fit rainfall forecasting
下载PDF
An Early Stage Detecting Method against SYN Flooding Attacks 被引量:1
9
作者 Sun Qibo Wang Shangguang Yan Danfeng Yang Fangchun 《China Communications》 SCIE CSCD 2009年第4期108-115,共8页
Existing detection methods against SYN flooding attacks are effective only at the later stages when attacking signatures are obvious.In this paper an early stage detecting method(ESDM) is proposed.The ESDM is a simple... Existing detection methods against SYN flooding attacks are effective only at the later stages when attacking signatures are obvious.In this paper an early stage detecting method(ESDM) is proposed.The ESDM is a simple but effective method to detect SYN flooding attacks at the early stage.In the ESDM the SYN traffic is forecasted by autoregressive integrated moving average model, and non-parametric cumulative sum algorithm is used to find the SYN flooding attacks according to the forecasted traffic.Trace-driven simulations show that ESDM is accurate and efficient to detect the SYN flooding attacks. 展开更多
关键词 denial-of-service attacks autoregressive integrated moving average model non-parametric cumulative sum algorithm
下载PDF
云南省总人口预测模型的比较研究 被引量:2
10
作者 郭靖 张银香 《楚雄师范学院学报》 2021年第3期8-15,共8页
本文以1973~2018年云南省总人口为例,分别建立Holt两参数指数平滑模型、ARIMA模型和三次多项式模型,利用最小AIC准则从ARIMA模型中选出了ARIMA(4,3,1)模型,与Holt两参数指数平滑模型和三次多项式模型做比较。通过模型预测值的平均误差... 本文以1973~2018年云南省总人口为例,分别建立Holt两参数指数平滑模型、ARIMA模型和三次多项式模型,利用最小AIC准则从ARIMA模型中选出了ARIMA(4,3,1)模型,与Holt两参数指数平滑模型和三次多项式模型做比较。通过模型预测值的平均误差率和残差的波动幅度的比较后,发现ARIMA(4,3,1)模型的拟合精度较高,适合用来预测短期的总人口数。基于此分析对云南省总人口进行了8期数的预测,发现云南省总人口数量呈现不断增加的趋势,但总人口数增长速率下降,总人口数量趋向饱和状态。 展开更多
关键词 ARIMA模型(autoregressive integrated moving average model) Holt两参数指数平滑模型 三次多项式模型 人口预测 模型比较
下载PDF
A Temporal Convolutional Network Based Hybrid Model for Short-term Electricity Price Forecasting 被引量:2
11
作者 Haoran Zhang Weihao Hu +3 位作者 Di Cao Qi Huang Zhe Chen Frede Blaabjerg 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第3期1119-1130,共12页
Electricity prices have complex features,such as high frequency,multiple seasonality,and nonlinearity.These factors will make the prediction of electricity prices difficult.However,accurate electricity price predictio... Electricity prices have complex features,such as high frequency,multiple seasonality,and nonlinearity.These factors will make the prediction of electricity prices difficult.However,accurate electricity price prediction is important for energy producers and consumers to develop bidding strategies.To improve the accuracy of prediction by using each algorithms’advantages,this paper proposes a hybrid model that uses the Empirical Mode Decomposition(EMD),Autoregressive Integrated Moving Average(ARIMA),and Temporal Convolutional Network(TCN).EMD is used to decompose the electricity prices into low and high frequency components.Low frequency components are forecasted by the ARIMA model and the high frequency series are predicted by the TCN model.Experimental results using the realistic electricity price data from Pennsylvania-New Jersey-Maryland(PJM)electricity markets show that the proposed method has a higher prediction accuracy than other single methods and hybrid methods. 展开更多
关键词 autoregressive integrated moving average model electricity price forecasting empirical mode decomposition temporal convolutional network
原文传递
Regulating bulkhead pressure of EPB shield machines through DEM modeling and data mining 被引量:4
12
作者 Panpan Cheng Fang Liu +1 位作者 Youjun Xu Yuanhai Li 《Underground Space》 SCIE EI CSCD 2023年第1期15-29,共15页
Proper regulation of the earth pressure on the bulkhead of earth-pressure balanced(EPB)shield tunneling machines is significant to ensure safe construction.This study proposes a procedure for regulating the bulkhead p... Proper regulation of the earth pressure on the bulkhead of earth-pressure balanced(EPB)shield tunneling machines is significant to ensure safe construction.This study proposes a procedure for regulating the bulkhead pressure by combining numerical simulations and data mining,and applies the procedure to a metro line constructed in sandy pebble stratum using EPB shield.Firstly,the relationship between the bulkhead pressure and the pressure on the tunnel face is carefully obtained from discrete element modeling,and the required supporting earth pressure is derived by considering the arching effect.Secondly,aided with the machine learning method,a model is constructed for predicting the average bulkhead pressure per ring according to the operational parameters(i.e.,the average driving speed and the rotation speed of the screw conveyor).Given the target value of the bulkhead pressure,the optimal values of the operational parameters are obtained from the model.In addition,an autoregressive moving average stochastic process model is developed to monitor the real-time fluctuation of the bulkhead pressure and guide the actions taken in time to avoid dramatic fluctuations.The results indicate that the pressure difference between the tunnel face and the bulkhead is considerable,and the consideration of the arching effect can avoid overestimating the bulkhead pressure.A combination of the machine learning model and the stochastic process model provides a plausible performance in regulating the bulkhead pressure around the target value without dramatic fluctuation. 展开更多
关键词 EPB shield machine Bulkhead pressure Discrete element method Support vector regression autoregressive moving average model
原文传递
CARMA-model-based j-step-ahead prediction for MIMO systems
13
作者 CHENG Yiping 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2007年第1期99-103,共5页
The single-input single-output(SISO)j-step-ahead predictor for generalized predictive control(GPC)controllers was traditionally derived using the polynomial approach through the Diophantine equations.An equivalent ver... The single-input single-output(SISO)j-step-ahead predictor for generalized predictive control(GPC)controllers was traditionally derived using the polynomial approach through the Diophantine equations.An equivalent version of the predictor in a state-space form is available in the literature.In this paper,a z-domain analysis of the multiple input multiple output(MIMO)extension of the state-space predictor is carried out,and then an MIMO j-step-ahead predictor in polynomial form based on the controlled auto-regressive moving average model is derived.The predictor enables us to simplify the GPC algorithm design for multivariable systems.In the SISO case the predictor is just the traditional GPC predictor,therefore this paper gives rigorous proof of the equivalence between the traditional GPC predictor and the state-space predictor. 展开更多
关键词 generalized predictive control multivariable control controlled autoregressive moving average model
原文传递
Model Predictive Control Strategy for Residential Battery Energy Storage System in Volatile Electricity Market with Uncertain Daily Cycling Load
14
作者 Dejan P.Jovanović Gerard F.Ledwich Geoffrey R.Walker 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第2期534-543,共10页
This paper presents a control strategy for residential battery energy storage systems,which is aware of volatile electricity markets and uncertain daily cycling loads.The economic benefits of energy trading for prosum... This paper presents a control strategy for residential battery energy storage systems,which is aware of volatile electricity markets and uncertain daily cycling loads.The economic benefits of energy trading for prosumers are achieved through a novel modification of a conventional model predictive control(MPC).The proposed control strategy guarantees an optimal global solution for the applied control action.A new cost function is introduced to model the effects of volatility on customer benefits more effectively.Specifically,the newly presented cost function models a probabilistic relation between the power exchanged with the grid,the net load,and the electricity market.The probabilistic calculation of the cost function shows the dependence on the mathematical expectation of market price and net load.Computational techniques for calculating this value are presented.The proposed strategy differs from the stochastic and robust MPC in that the cost is calculated across the market price and net load variations rather than across model constraints and parameter variations. 展开更多
关键词 Optimal control model predictive control(MPC) energy market nonlinear constrained optimization revenue for battery energy storage system Gaussian mixture model autoregressive integrated moving average model
原文传递
A case study on the shareholder network effect of stock market data:An SARMA approach
15
作者 Rong Zhang Jing Zhou +1 位作者 Wei Lan Hansheng Wang 《Science China Mathematics》 SCIE CSCD 2022年第11期2219-2242,共24页
One of the key research problems in financial markets is the investigation of inter-stock dependence.A good understanding in this regard is crucial for portfolio optimization.To this end,various econometric models hav... One of the key research problems in financial markets is the investigation of inter-stock dependence.A good understanding in this regard is crucial for portfolio optimization.To this end,various econometric models have been proposed.Most of them assume that the random noise associated with each subject is independent.However,dependence might still exist within this random noise.Ignoring this valuable information might lead to biased estimations and inaccurate predictions.In this article,we study a spatial autoregressive moving average model with exogenous covariates.Spatial dependence from both response and random noise is considered simultaneously.A quasi-maximum likelihood estimator is developed,and the estimated parameters are shown to be consistent and asymptotically normal.We then conduct an extensive analysis of the proposed method by applying it to the Chinese stock market data. 展开更多
关键词 spatial autoregressive moving average model shareholder network effect quasi-maximum likelihood estimator stock market data
原文传递
Real-time road traffic state prediction based on ARIMA and Kalman filter 被引量:28
16
作者 Dong-wei XU Yong-dong WANG +2 位作者 Li-min JIA Yong QIN Hong-hui DONG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第2期287-302,共16页
The realization of road traffic prediction not only provides real-time and effective information for travelers, but also helps them select the optimal route to reduce travel time. Road traffic prediction offers traffi... The realization of road traffic prediction not only provides real-time and effective information for travelers, but also helps them select the optimal route to reduce travel time. Road traffic prediction offers traffic guidance for travelers and relieves traffic jams. In this paper, a real-time road traffic state prediction based on autoregressive integrated moving average (ARIMA) and the Kalman filter is proposed. First, an ARIMA model of road traffic data in a time series is built on the basis of historical road traffic data. Second, this ARIMA model is combined with the Kalman filter to construct a road traffic state prediction algorithm, which can acquire the state, measurement, and updating equations of the Kalman filter. Third, the optimal parameters of the algorithm are discussed on the basis of historical road traffic data. Finally, four road segments in Beijing are adopted for case studies. Experimental results show that the real-time road traffic state prediction based on ARIMA and the Kalman filter is feasible and can achieve high accuracy. 展开更多
关键词 autoregressive integrated moving average (ARIMA) model Kalman filter Road traffic state REAL-TIME PREDICTION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部