Under the quadratic approximation of the Rytov's phase structure function, this paper derives the general closed-form expressions for the mean-squared width and the angular spread of partially coherent beams in turbu...Under the quadratic approximation of the Rytov's phase structure function, this paper derives the general closed-form expressions for the mean-squared width and the angular spread of partially coherent beams in turbulence. It finds that under a certain condition different types of partially coherent beams may have the same directionality as a fully coherent Gaussian beam in free space and also in atmospheric turbulence if the angular spread is chosen as the characteristic parameter of beam directionality. On the other hand, it shows that generally, the directionality of partially coherent beams expressed in terms of the angular spread is not consistent with that in terms of the normalized far-field average intensity distribution in free space, but the consistency can be achieved due to turbulence.展开更多
With the help of the extended Huygens-Fresnel principle and the short-term mutual coherence function, the analytical formula of short-term average intensity for multi-Gaussian beam (MGB) in the turbulent a^mosphere ...With the help of the extended Huygens-Fresnel principle and the short-term mutual coherence function, the analytical formula of short-term average intensity for multi-Gaussian beam (MGB) in the turbulent a^mosphere has been derived. The intensity in the absence of turbulence and the long-term average intensity in turbulence can both also be expressed in this formula. As special cases, comparisons among short-term average intensity, long-term average intensity, and the intensity in the absence of turbulence for flat topped beam and annular beam are carried out. The effects of the order of MGB, propagation distance and aperture radius on beam spreading are analysed and discussed in detail.展开更多
Time reversal mirror (TRM) can use the physical characteristics of the underwater acoustic (UWA) channel to focus on the desired user in multi-user UWA communication. The active average sound intensity (AASI) de...Time reversal mirror (TRM) can use the physical characteristics of the underwater acoustic (UWA) channel to focus on the desired user in multi-user UWA communication. The active average sound intensity (AASI) detector can estimate all azimuths of users with the same frequency band at the same time in order to achieve directional communication by vector combination. Space-division multiple access (SDMA) based on TRM combined with the AASI detector is proposed in this paper, which can make the capacity of the code division multiple access (CDMA) UWA system significantly increase. The simulation and lake test results show that the 7-user UWA multi-user system can achieve low bit error communication.展开更多
A reverberation model for estimating the average reverberation intensity in layered shallow water is presented.The reverberation intensity is calculated in terms of ray theory for short range and normal mode theory fo...A reverberation model for estimating the average reverberation intensity in layered shallow water is presented.The reverberation intensity is calculated in terms of ray theory for short range and normal mode theory for long range. The calculation accuracy has been improved by taking into account the effect of complex eigenvalues on the incident normal mode field. From the comparison between different scattering models it has been shown that the separable bistatic-backscattering model is acceptable. This makes it possible to calculate reverberation by using only the monostatic-backscattering coefficient and to save greatly the computing time.展开更多
In order to calculate the stress intensity factor(SIF) of crack tips in two-dimensional cracks from the viewpoint of strain energy density, a procedure to use the strain energy density factor to calculate the SIF is p...In order to calculate the stress intensity factor(SIF) of crack tips in two-dimensional cracks from the viewpoint of strain energy density, a procedure to use the strain energy density factor to calculate the SIF is proposed. In this paper, the procedure is presented to calculate the SIF of crack tips in mode I cracks, mode II cracks and I+II mixed mode cracks. Meanwhile, the results are compared to those calculated by traditional approaches or other approaches based on strain energy density and verified by theoretical solutions. Furthermore, the effect of mesh density near the crack tip is discussed, and the proper location where the strain energy density factor is calculated is also studied. The results show that the SIF calculated by this procedure is close to not only those calculated by other approaches but also the theoretical solutions, thus it is capable of achieving accurate results.Besides, the mesh density around the crack tip should meet such requirements that, in the circular area created, the first layer of singular elements should have a radius about 0.05 mm and each element has a circumferential directional meshing angle to be15°–20°. Furthermore, for a single element around the crack tip, the strain energy density factor is suggested to be calculated in the location where half of the sector element's radius from the crack tip.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 60778048)
文摘Under the quadratic approximation of the Rytov's phase structure function, this paper derives the general closed-form expressions for the mean-squared width and the angular spread of partially coherent beams in turbulence. It finds that under a certain condition different types of partially coherent beams may have the same directionality as a fully coherent Gaussian beam in free space and also in atmospheric turbulence if the angular spread is chosen as the characteristic parameter of beam directionality. On the other hand, it shows that generally, the directionality of partially coherent beams expressed in terms of the angular spread is not consistent with that in terms of the normalized far-field average intensity distribution in free space, but the consistency can be achieved due to turbulence.
文摘With the help of the extended Huygens-Fresnel principle and the short-term mutual coherence function, the analytical formula of short-term average intensity for multi-Gaussian beam (MGB) in the turbulent a^mosphere has been derived. The intensity in the absence of turbulence and the long-term average intensity in turbulence can both also be expressed in this formula. As special cases, comparisons among short-term average intensity, long-term average intensity, and the intensity in the absence of turbulence for flat topped beam and annular beam are carried out. The effects of the order of MGB, propagation distance and aperture radius on beam spreading are analysed and discussed in detail.
基金supported by the National Natural Science Foundation of China(6147113751179034)+3 种基金the Ships Pre-research Support Technology Fund(13J3.1.5)the Natural Science Foundation of Heilongjiang Province(F201109)the Innovation Talents of Science and the Technology Research Projects of Harbin(2013RFQXJ101)the National Defense Basic Technology Research(JSJC2013604C012)
文摘Time reversal mirror (TRM) can use the physical characteristics of the underwater acoustic (UWA) channel to focus on the desired user in multi-user UWA communication. The active average sound intensity (AASI) detector can estimate all azimuths of users with the same frequency band at the same time in order to achieve directional communication by vector combination. Space-division multiple access (SDMA) based on TRM combined with the AASI detector is proposed in this paper, which can make the capacity of the code division multiple access (CDMA) UWA system significantly increase. The simulation and lake test results show that the 7-user UWA multi-user system can achieve low bit error communication.
文摘A reverberation model for estimating the average reverberation intensity in layered shallow water is presented.The reverberation intensity is calculated in terms of ray theory for short range and normal mode theory for long range. The calculation accuracy has been improved by taking into account the effect of complex eigenvalues on the incident normal mode field. From the comparison between different scattering models it has been shown that the separable bistatic-backscattering model is acceptable. This makes it possible to calculate reverberation by using only the monostatic-backscattering coefficient and to save greatly the computing time.
基金supported by the National Natural Science Foundation of China(Grant No.51438002)
文摘In order to calculate the stress intensity factor(SIF) of crack tips in two-dimensional cracks from the viewpoint of strain energy density, a procedure to use the strain energy density factor to calculate the SIF is proposed. In this paper, the procedure is presented to calculate the SIF of crack tips in mode I cracks, mode II cracks and I+II mixed mode cracks. Meanwhile, the results are compared to those calculated by traditional approaches or other approaches based on strain energy density and verified by theoretical solutions. Furthermore, the effect of mesh density near the crack tip is discussed, and the proper location where the strain energy density factor is calculated is also studied. The results show that the SIF calculated by this procedure is close to not only those calculated by other approaches but also the theoretical solutions, thus it is capable of achieving accurate results.Besides, the mesh density around the crack tip should meet such requirements that, in the circular area created, the first layer of singular elements should have a radius about 0.05 mm and each element has a circumferential directional meshing angle to be15°–20°. Furthermore, for a single element around the crack tip, the strain energy density factor is suggested to be calculated in the location where half of the sector element's radius from the crack tip.