Probabilistic linear (N, δ)-widths and p-average linear N-widths of Sobolev space W2^r(T), equipped with a Gaussian probability measure #, are studied in the metric of Sq (T) (1 ≤ Q ≤∞), and determined the...Probabilistic linear (N, δ)-widths and p-average linear N-widths of Sobolev space W2^r(T), equipped with a Gaussian probability measure #, are studied in the metric of Sq (T) (1 ≤ Q ≤∞), and determined the asymptotic equalities:λN,δ(W2^r(T),μ,Sq(T))={(N^-1)^r+p/2-1/q√1+1/N·ln1/δ, 1≤q≤2, (N^-1)^r+p/2-1/q(1+N^-1/q√ln1/δ),2〈q〈∞, (N^-1)^r+p/2√lnN/δ, q=∞,and λN^(a)(W2^r(T),μ,Sq(T))p={(N^-1)^r+p/2-1/q, 1≤q〈∞, (N^-1)^r+p/2-1/q√lnN, q=∞,where 0 〈 p 〈 ∞, δ∈ (0, 1/2], ρ 〉 1, and Sq(T) is a subspace of L1(T), in which the Fourier series is absolutely convergent in lq sense.展开更多
基金partially supported by National Nature Science Foundation of China(61372187)Sichuan Key Technology Research and Development Program(2012GZ0019,2013GXZ0155)the Fund of Lab of Security Insurance of Cyberspace,Sichuan Province(szjj2014-079)
文摘Probabilistic linear (N, δ)-widths and p-average linear N-widths of Sobolev space W2^r(T), equipped with a Gaussian probability measure #, are studied in the metric of Sq (T) (1 ≤ Q ≤∞), and determined the asymptotic equalities:λN,δ(W2^r(T),μ,Sq(T))={(N^-1)^r+p/2-1/q√1+1/N·ln1/δ, 1≤q≤2, (N^-1)^r+p/2-1/q(1+N^-1/q√ln1/δ),2〈q〈∞, (N^-1)^r+p/2√lnN/δ, q=∞,and λN^(a)(W2^r(T),μ,Sq(T))p={(N^-1)^r+p/2-1/q, 1≤q〈∞, (N^-1)^r+p/2-1/q√lnN, q=∞,where 0 〈 p 〈 ∞, δ∈ (0, 1/2], ρ 〉 1, and Sq(T) is a subspace of L1(T), in which the Fourier series is absolutely convergent in lq sense.