期刊文献+
共找到1,101篇文章
< 1 2 56 >
每页显示 20 50 100
Aerodynamic Design and Analysis of a Low-reaction Axial Compressor Stage 被引量:13
1
作者 羌晓青 王松涛 +1 位作者 冯国泰 王仲奇 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第1期1-7,共7页
There is introduced a new low-reaction, highly-loaded axial compressor design concept which is coupled with boundary layer suction method. The characteristic features of the concept are made clear through its comparis... There is introduced a new low-reaction, highly-loaded axial compressor design concept which is coupled with boundary layer suction method. The characteristic features of the concept are made clear through its comparison with the MIT boundary layer suction compressor. Also are pointed out the potential applications of this concept as well as its key technological problems. Based on this concept, a single-stage, low-reaction and low-speed axial compressor is constructed in association with analysis and computation of boundary layer suction on vanes with the aid of a three-dimensional numerical approach. The results attest to the effectiveness of this way to control separation in blade cascades by the boundary layer suction and the feasibility of this proposed design concept. 展开更多
关键词 aerospace propulsion system low-reaction axial compressor boundary layer suction energy loss
下载PDF
Effects of Deposition Models on Deposition and Performance Deterioration in Axial Compressor Cascade 被引量:2
2
作者 贾会霞 席光 +1 位作者 高丽敏 闻苏平 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2005年第1期20-24,共5页
A new particle deposition model, namely partial deposition model, is developed in order to improve the accuracy of prediction to particle deposition. Concepts of critical velocity and critical angle are proposed and u... A new particle deposition model, namely partial deposition model, is developed in order to improve the accuracy of prediction to particle deposition. Concepts of critical velocity and critical angle are proposed and used to determine whether particles are deposited or not. The comparison of numerical results calculated by partial deposition model and existing deposition model shows that the deposition distribution obtained by partial deposition model is more reasonable. Based on the predicted deposition results, the change of total pressure loss coefficient with operating time and the distribution of pressure coefficients on blade surface after 500 hours are predicted by using partial deposition model. 展开更多
关键词 axial compressors cascade partial deposition model performance deterioration
下载PDF
Experimental investigation about the effect of non-axisymmetric wake impact on a low speed axial compressor
3
作者 Jianyong Liu Yajun Lu Zhiping Li 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第2期305-312,共8页
Non-axisymmetric wake impact experiments were carried out after the best exciting frequency for a low speed axial compressor had been found by axisymmetric wake impact experiments. When the number and circumferential ... Non-axisymmetric wake impact experiments were carried out after the best exciting frequency for a low speed axial compressor had been found by axisymmetric wake impact experiments. When the number and circumferential distribution of inlet guide vanes (IGV) are logical, the wakes of non-axisymmetric IGVs can exert beneficial unsteady exciting effect on their downstream rotor flow fields and improve the compressor's performance. In the present paper, four non-axisymmetric wake impact plans were found working better than the axisymmetric wake impact plan. Compared with the base plan, the best non-axisymmetric plan increased the compressor's peak efficiency, and the total pressure rise by 1.1 and 2%, and enhanced the stall margin by 4.4%. The main reason why non-axisymmetric plans worked better than the axisymmetric plan was explained as the change of the unsteady exciting signal arising from IGV wakes. Besides the high-frequency components, the nonaxisymmetric plan generated a beneficial low-frequency square-wave exciting signal and other secondary frequency components. Compared with the axisymmetric plan, multifrequency exciting wakes arising from the non-axisymmetric plans are easier to get coupling relation with complex vortices such as clearance vortices, passage vortices and shedding vortices. 展开更多
关键词 axial compressor· Non-axisymmetric · Wake ·Coupling
下载PDF
Numerical study of a 3.5-stage axial compressor at on-and off-design conditions 被引量:9
4
作者 ZhuoWang 《航空动力学报》 EI CAS CSCD 北大核心 2007年第9期1444-1454,共11页
Numerical investigation is conducted on a 3.5-stage axial compressor,on which numerous experimental projects were carried out at the Institute during the last years and an experimental database was established.In the ... Numerical investigation is conducted on a 3.5-stage axial compressor,on which numerous experimental projects were carried out at the Institute during the last years and an experimental database was established.In the current study five on-and off-design operating points are simulated using a RANS solver and the results are compared with the measurement.The result shows that the compressor performance can be qualitatively predicted by the mixing-plane method.Better agreement is obtained for the on-design operating point.However,as the flow unsteadiness is insufficiently considered,the numerical method produces end-wall low-speed flow layers accumulated with the flow passing through the passage,which is in no good agreement with the experimental data.In the numerical simulation the rotor rows receive less work and this difference from the measurement increases with the rotational speed.In contrast,the stator rows increase the pressure more efficiently than the measurement.In the simulation the flow in the last stator row tends more to separate on the pressure side of the blade.For the operating points close to the surge line,the predicted separation is more intense than the experimental observation.But for the operating points close to the choke,the separation is suppressed. 展开更多
关键词 数字模拟 轴向压缩机 计算流体动力学 混合燃料飞机 设计
下载PDF
Structural and Conceptual Design Analysis of an Axial Compressor for a 100 MW Industrial Gas Turbine (IND100)
5
作者 D. S. Aziaka E. O. Osigwe B. T. Lebele-Alawa 《World Journal of Mechanics》 2014年第11期332-347,共16页
The structural design of the IND100 axial compressor requires a multistage interrelationship between the thermodynamic, aerodynamic, mechanical design and structural integrity analysis of the component. These design c... The structural design of the IND100 axial compressor requires a multistage interrelationship between the thermodynamic, aerodynamic, mechanical design and structural integrity analysis of the component. These design criteria, sometimes act in opposition, hence engineering balance is employed within the specified design performance limits. This paper presents the structural and conceptual design of a sixteen stage single shaft high pressure compressor of IND100 with an overall pressure ratio of 12 and mass flow of 310 kg/s at ISOSLS conditions. Furthermore, in order to evaluate the conceptual design analysis, basic parameters like compressor sizing, load and blade mass, disc stress analysis, bearings and material selections, conceptual disc design and rotor dynamics are considered using existing tools and analytical technique. These techniques employed the basic thermodynamic and aerodynamic theory of axial flow compressors to determine the temperature and pressure for all stages, geometrical parameters, velocity triangle, and weight and stress calculations of the compressor disc using Sagerser Empirical Weight Estimation. The result analysis shows a constant hub diameter annulus configuration with compressor overall axial length of 3.75 m, tip blade speed of 301 m/s, maximum blade centrifugal force stress of 170 MPa, with major emphasis on industrial application for the structural component design selections. 展开更多
关键词 Gas-Turbine STRUCTURAL DESIGN CONCEPTUAL DESIGN Analysis axial compressor Mechanical INTEGRITY
下载PDF
An improved deviation model for transonic stages in axial compressors
6
作者 Xiaochen WANG Xuesong LI +3 位作者 Xiaodong REN Chunwei GU Xiaobin QUE Guoyu ZHOU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第7期93-108,共16页
Deviation model is an important model for through-flow analysis in axial compressors.Theoretical analysis in classical deviation models is developed under the assumption of onedimensional flow,which is controlled by t... Deviation model is an important model for through-flow analysis in axial compressors.Theoretical analysis in classical deviation models is developed under the assumption of onedimensional flow,which is controlled by the continuity equation.To consider three-dimensional characteristics in transonic flow,this study proposes an improved theoretical analysis method combining force analysis of the blade-to-blade flow with conventional analysis of the continuity equation.Influences of shock structures on transverse force,streamwise velocity and streamline curvature in the blade-to-blade flow are analyzed,and support the analytical modelling of density flow ratio between inlet and outlet conditions.Thus,a novel deviation model for transonic stages in axial compressors is proposed in this paper.The empirical coefficients are corrected based on the experimental data of a linear cascade,and the prediction accuracy is validated with the experimental data of a three-stage transonic compressor.The novel model provides accurate predictions for meridional flow fields at the design point and performance curves at design speed,and shows obvious improvements on classical models by Carter and C¸etin. 展开更多
关键词 axial compressor Transonic flow Deviation model Through-flow method Aerodynamic performance
原文传递
Effect of wire mesh casing treatment on axial compressor performance and stability
7
作者 Ming ZHANG Jiaming ZHANG +3 位作者 Jiahao HU Xu DONG Dakun SUN Xiaofeng SUN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第3期60-76,共17页
In this paper,a kind of Wire Mesh Casing Treatment(WMCT)is proposed to improve the stable operating range of the compressor.In contrast to the traditional circumferential groove,as for WMCT,a layer of wire mesh is lai... In this paper,a kind of Wire Mesh Casing Treatment(WMCT)is proposed to improve the stable operating range of the compressor.In contrast to the traditional circumferential groove,as for WMCT,a layer of wire mesh is laid on the surface of the circumferential groove.Parametric studies were conducted on the low-speed axial flow compressor,including the groove width,axial location,and mesh count.The optimum axial location for WMCT is related to its groove width.A higher wire mesh count results in a smaller compressor stall margin improvement.Steady simulations were carried out to study the effect of WMCT on the flow structure of the compressor.The wire mesh in the WMCT has a certain flow resistance,which restricts the flow into and out of the groove.Due to the WMCT,the flow parameter in the tip region of the rotor is less sensitive to changes in the operating conditions of the compressor.The WMCT causes the rotor tip blade loading to shift backward,inhibiting the formation of spill forward of the leakage flow,and thus improving the stability of the compressor.The flow resistance on the groove surface is a new degree-of-freedom for the casing treatment designer. 展开更多
关键词 axial compressor Wire mesh casing treatment Tip clearance flow Stall margin Blade loading
原文传递
Experimental and Numerical Investigation of Non-synchronous Blade Vibration Excitation in a Transonic Axial Compressor
8
作者 WANG Songbai WU Yadong +1 位作者 CHEN Yong CAO Zhipeng 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第2期602-610,共9页
The complex flow phenomenon of rotating instability(RI) and its induced non-synchronous vibration(NSV) have become a significant challenge as they continuously increase aerodynamic load.This study aims to provide an u... The complex flow phenomenon of rotating instability(RI) and its induced non-synchronous vibration(NSV) have become a significant challenge as they continuously increase aerodynamic load.This study aims to provide an understanding of the non-synchronous blade vibration phenomenon caused by the rotating instability of a transonic axial compressor rotor.In this case,blade vibrations and non-synchronous excitation are captured by strain gauges and unsteady wall pressure transducer sensors.Unsteady numerical simulations for a full-annulus configuration are used to obtain the non-synchronous flow excitation.The results show that the first-stage rotor blade exhibits an NSV close to the first bending mode;NSV is accompanied by a sharp increase in pressure pulsation;amplitude can reach 20%,and unsteady aerodynamic frequency will lock in a structural mode frequency when the blade vibrates in a large-amplitude motion.The predicted NSV frequency aligns well with the experimental results.The dominant mode of circumferential instability flow structure is approximately 47% of the number blades,and the cell size occupies 2-3 pitches in the circumferential direction.The full-annulus unsteady simulations demonstrate that the streamwise oscillation of the shedding and reattachment vortex structure is the main cause of NSV owing to the strong interaction between the tip leakage and separation vortices near the suction surface. 展开更多
关键词 non-synchronous vibration transonic axial compressor rotor blade rotating instabilities unsteady flow
原文传递
A Methodology for Assessing Axial Compressor Stability with Inlet Temperature Ramp Distortion
9
作者 SUN Dakun GU Benhao +4 位作者 NING Fangfei FANG Yibo DONG Xu XU Dengke SUN Xiaofeng 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第3期856-871,共16页
Based on a small perturbation stability model for periodic flow,the effects of inlet total temperature ramp distortion on the axial compressor are investigated and the compressor stability is quantitatively evaluated.... Based on a small perturbation stability model for periodic flow,the effects of inlet total temperature ramp distortion on the axial compressor are investigated and the compressor stability is quantitatively evaluated.In the beginning,a small perturbation stability model for the periodic flow in compressors is proposed,referring to the governing equations of the Harmonic Balance Method.This stability model is validated on a single-stage low-speed compressor TA36 with uniform inlet flow.Then,the unsteady flow of TA36 with different inlet total temperature ramps and constant back pressure is simulated based on the Harmonic Balance Method.Based on these simulations,the compressor stability is analyzed using the proposed small perturbation model.Further,the Dynamic Mode Decomposition method is employed to accurately extract pressure oscillations.The two parameters of the temperature ramp,ramp rate and Strouhal number,are discussed in this paper.The results indicate the occurrence and extension of hysteresis loops in the rows,and a decrease in compressor stability with increasing ramp rate.Compressor performance is divided into two phases,stable and limit,based on the ramp rate.Furthermore,the model predictions suggest that a decrease in period length and an increase in Strouhal number lead to improved compressor stability.The DMD results imply that for compressors with inlet temperature ramp distortion,the increase of high-order modes and oscillations at the rotor tip is always the signal of decreasing stability. 展开更多
关键词 axial compressor stability small perturbation model inlet temperature ramp distortion harmonic balance method dynamic mode decomposition method
原文传递
Modal Analysis of Axial Compressor Tip Rotating Instability under Varying Operating Conditions 被引量:2
10
作者 LI Tao WU Yadong +1 位作者 TIAN Jie OUYANG Hua 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第4期1345-1356,共12页
The full annulus numerical research was performed on a low-speed compressor rotor to investigate the rotating instability in the tip region.The frequency spectra show the existence of rotating instability at narrow st... The full annulus numerical research was performed on a low-speed compressor rotor to investigate the rotating instability in the tip region.The frequency spectra show the existence of rotating instability at narrow stable operating range.With the decrease of flow rate,31 cells of flow disturbance can be found in the instantaneous flow field.The distribution of vortex suggests that the circumferential propagation of the interaction between tip leakage vortex and adjacent blade brings about these cells.The dynamic mode decomposition(DMD)method and spatial discrete Fourier transform(SDFT)were applied to obtain the circumferential mode features,and the results indicate that the rotating instability is associated with the 31 cells of flow disturbance.Then the DMD method was further applied on the pressure data from a circle and an annulus domain,so as to extract different mode components with the corresponding spatial structures,frequencies and amplitudes.The results suggest that DMD modes can display the flow feature and explore the evolution of each instability source in the tip flow field. 展开更多
关键词 axial compressor rotating instability flow structure circumferential mode dynamic mode decomposition
原文传递
Design Optimization of Non-Axisymmetric Vane for an Axial Compressor under Inlet Distortion 被引量:2
11
作者 ZHANG Min DU Juan +4 位作者 ZHAO Hongliang QIU Jiahui BA Dun CHEN Yang NIE Chaoqun 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第4期1321-1334,共14页
The flow field at the inlet of compressors is generally encountered combined total pressure and swirl distortion for either aircraft engine with S-duct or gas turbine with lateral air intake.This inevitably deteriorat... The flow field at the inlet of compressors is generally encountered combined total pressure and swirl distortion for either aircraft engine with S-duct or gas turbine with lateral air intake.This inevitably deteriorates compressor aerodynamic performance,including not only the efficiency or pressure ratio but also the operation stability.In order to conquer this issue,appropriate measures such as integrating flow control techniques and modifying inlet or compressor design are of benefits.Due to this motivation,this article develops a full-annular two-dimensional(2D)and a partial-annular three-dimension(3D)optimization strategy for non-axisymmetric vane design.Firstly,two numerical simulation methods for evaluating performance of full-annular 2D vane and compressor with partial-annular 3D vane are developed.The swirl patterns at the inlet of a 1.5-stage axial compressor are analyzed and parametrized,and the parameterization is transferred to characterize the circumferential distribution of geometrical parameters of the vane profile.These approaches dramatically reduce computational simulation costs without violating the non-axisymmetric flow distortion patterns.Then various full-annular 2D sections at different radial locations are constructed as design space.The designed vane is reconstructed and 3D numerical simulations are performed to examine performance of the non-axisymmetric vane and the compressor with it.Also,partial annular 3D optimization is conducted for balancing compressor efficiency and stall margin.Results indicate that the designed non-axisymmetric vane based on full-annular optimization approach can decrease the vane total pressure loss under the considered inlet flow distortion,while those using partial-annular optimization achieve positive effects on compressor stall margin. 展开更多
关键词 combined total pressure and swirl distortion axial compressor non-axisymmetric vane OPTIMIZATION aerodynamic performance
原文传递
A Review on Theoretical and Numerical Research of Axial Compressor Surge 被引量:1
12
作者 ZHAO Hongliang DU Juan +2 位作者 ZHANG Wenqiang ZHANG Hongwu NIE Chaoqun 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第1期254-263,共10页
Surge is an unstable operating condition of the aero-engine that can move the engine into a destabilized state and cause devastating damage.One of the most popular topics in the academic and industrial communities is ... Surge is an unstable operating condition of the aero-engine that can move the engine into a destabilized state and cause devastating damage.One of the most popular topics in the academic and industrial communities is to figure out the mechanism of the surge and withdraw from the surge safely.Based on rig test results and practical data from engine operation,various theories of surge mechanisms have been proposed by researchers,and some classical analytical models have been developed for modelling and prediction.In recent years,with the rapid development of numerical simulation and the improvement of computational capability,computational fluid dynamics(CFD)has been widely applied to the investigation of axial compressor surge events.In this review,the principles and general characteristics of the surge phenomenon are first introduced.Subsequently,the main theoretical models and CFD simulations are presented,and their advantages and disadvantages are discussed.In conclusion,we have proposed potential improvements and future technical routes for the surge phenomenon.The purpose of this paper is to provide a valuable reference for surge studies on axial compressors. 展开更多
关键词 axial compressor SURGE THEORETICAL NUMERICAL CFD
原文传递
Numerical and experimental study of bleed impact in multistage axial compressors 被引量:1
13
作者 Baojie LIU Xinwei ZHUANG +1 位作者 Guangfeng AN Xianjun YU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第2期1-16,共16页
In this study,the influence of inter-stage bleeding on the compressor performance and inter-stage flow field of a multistage axial compressor is investigated by both experimental and numerical methods.The experiment i... In this study,the influence of inter-stage bleeding on the compressor performance and inter-stage flow field of a multistage axial compressor is investigated by both experimental and numerical methods.The experiment is conducted on a four-stage low-speed axial compressor,and a specific computational model is built to simulate the experiment environment accurately.To illuminate the fluid mechanisms of bleeding effect in detail,both the experiment and the simulation are carried out twice,i.e.,in the first time,the mass flow rate upstream the bleed location is constant under different bleed rate conditions;while in the second time,the mass flow rate downstream the bleed location is constant under different bleed rate conditions.The results demonstrate that inter-stage bleeding has little influence on upstream compressor characteristics,and affects the upstream flow field only in the rear half of the stator.The bleed effect on the downstream flow field is embodied in the variation of an incoming flow profile,an increase as the compressor inlet flow coefficient decreases.Therefore,such an effect is only significant on compressor characteristics at small flow coefficient conditions.In multistage compressors,the variation of compressor characteristics and flow field caused by inter-stage bleeding is the comprehensive result of the bleeding and the variation of the upstream working condition.In addition,the comparison between numerical and experimental results shows that the flow moves towards top half of span through the downstream rotor passage in the numerical simulation,whereas the trend of flow field variation with different bleed rates at the outlet of the downstream rotor and stator is the same with that at the inlet of the downstream rotor in the experiment,which means that the numerical method has overestimated the radial mixing intensity of the flow. 展开更多
关键词 compressor characteristics Inter-stage bleeding Low-speed compressor experiment Multistage axial compressor Spanwise mixing
原文传递
Numerical and experimental investigation of quantitative relationship between secondary flow intensity and inviscid blade force in axial compressors
14
作者 Chenghua ZHOU Zixuan YUE +3 位作者 Hanwen GUO Xiwu LIU Donghai JIN Xingmin GUI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第10期101-111,共11页
The secondary flow attracts wide concerns in the aeroengine compressors since it has become one of the major loss sources in modern high-performance compressors.But the research about the quantitative relationship bet... The secondary flow attracts wide concerns in the aeroengine compressors since it has become one of the major loss sources in modern high-performance compressors.But the research about the quantitative relationship between secondary flow and inviscid blade force needs to be more detailed.In this paper,a database of 889 three-dimensional linear cascades was built.An indicator,called Secondary Flow Intensity(SFI),was used to express the loss caused by secondary flow.The quantitative relationship between the SFI and inviscid blade force deterioration was researched.Blade oil flow and Computation Fluid Dynamics(CFD)results of some cascades were also used to cross-validate.Results suggested that all numerical cascade cases can be divided into 3 clusters by the SFI,which are called Clusters A,B and C in the order of the increasing SFI indicator.The corner stall,known as the strong corner separation,only happens when the SFI is high.Both calculations and oil flow experiments show that the SFI would stay at a low level if the vortex core at the endwall surface does not appear.The strong interaction of Kutta condition and endwall cross-flow is considered the dominant mechanism of higher secondary flow losses,rather than the secondary flow penetration depth on the suction surface.In conclusion,the inviscid blade force spanwise deterioration is strongly related to the SFI.The correlation of the SFI and spanwise inviscid blade force deterioration is given in this paper.The correlation could provide a quantitative reference for estimating secondary flow losses in the design. 展开更多
关键词 axial compressor cascade Corner separation Spanwise inviscid blade force Secondary flow intensity Quantitative correlation
原文传递
A stall diagnosis method based on entropy feature identification in axial compressors
15
作者 Yang Liu Juan Du +3 位作者 Jichao Li Yang Xu Junqiang Zhu Chaoqun Nie 《International Journal of Mechanical System Dynamics》 2023年第1期73-84,共12页
A stall diagnosis method based on the entropy feature extraction algorithm is developed in axial compressors.The reliability of the proposed method is determined and a parametric sensitivity analysis is experimentally... A stall diagnosis method based on the entropy feature extraction algorithm is developed in axial compressors.The reliability of the proposed method is determined and a parametric sensitivity analysis is experimentally conducted for two different types of compressor stall diagnoses.A collection of time‐resolved pressure sensors is mounted circumferentially and along the chord direction to measure the dynamic pressure on the casing.Results show that the stall and prestall precursor embedded in the dynamic pressures are identified through nonlinear feature perturbation extraction using the entropy feature extraction algorithm.Further analysis demonstrates that the prestall precursor with the peak entropy value is related to the unsteady tip leakage flow for the spike‐type stall diagnosis.The modal wave inception with increasing amplitude is identified by the considerable increase of the entropy value.The flow field in the tip region indicates that the modal wave corresponds to the flow separation in the suction side of the rotor blade.The warning time is 100–300 rotor revolutions for both types of stall diagnoses,which is beneficial for stall control in different axial compressors.Moreover,a parametric study of the embedding dimension m,similar tolerance n,similar radius r,and data length N in the fuzzy entropy method is conducted to determine the optimal parameter setting for stall diagnosis.The stall warning based on the entropy feature extraction algorithm provides a new stall diagnosis approach in the axial compressor with different stall types.This stall warning can also be adopted as an online stability monitoring index when using the concept of active stall control. 展开更多
关键词 stall diagnosis entropy feature extraction algorithm fuzzy approximate entropy axial compressor
原文传递
Effects of Axial Non-uniform Tip Clearances on Aerodynamic Performance of a Transonic Axial Compressor 被引量:10
16
作者 Hongwei MA Baihe LI 《Journal of Thermal Science》 SCIE EI CAS CSCD 2008年第4期331-336,共6页
This paper presents a numerical investigation of effects of axial non-uniform tip clearances on the aerodynamic performance of a transonic axial compressor rotor (NASA Rotor 37). The three-dimensional steady flow fi... This paper presents a numerical investigation of effects of axial non-uniform tip clearances on the aerodynamic performance of a transonic axial compressor rotor (NASA Rotor 37). The three-dimensional steady flow field within the rotor passage was simulated with the datum tip clearance of 0.356 mm at the design wheel speed of 17188.7 rpm. The simulation results are well consistent with the measurement results, which verified the numeri- cal method. Then the three-dimensional steady flow field within the rotor passage was simulated respectively with different axial non-uniform tip clearances. The calculation results showed that optimal axial non-uniform tip clearances could improve the compressor performance, while the efficiency and the pressure ratio of the com- pressor were increased. The flow mechanism is that the axial non-uniform tip clearance can weaken the tip leak- age vortex, blow down low-energy fluids in boundary layers and reduce both flow blockage and tip loss. 展开更多
关键词 axial compressor axial non-uniform clearances numerical simulation PERFORMANCE
原文传递
Blade bowing effects on radial equilibrium of inlet flow in axial compressor cascades 被引量:5
17
作者 Han XU Hao CHANG +1 位作者 Donghai JIN Xingmin GUI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第5期1651-1659,共9页
The circumferentially averaged equation of the inlet flow radial equilibrium in axial compressor was deduced. It indicates that the blade inlet radial pressure gradient is closely related to the radial component of th... The circumferentially averaged equation of the inlet flow radial equilibrium in axial compressor was deduced. It indicates that the blade inlet radial pressure gradient is closely related to the radial component of the circumferential fluctuation(CF) source item. Several simplified cascades with/without aerodynamic loading were numerically studied to investigate the effects of blade bowing on the inlet flow radial equilibrium. A data reduction program was conducted to obtain the CF source from three-dimensional(3D) simulation results. Flow parameters at the passage inlet were focused on and each term in the radial equilibrium equation was discussed quantitatively. Results indicate that the inviscid blade force is the inducement of the inlet CF due to geometrical asymmetry. Blade bowing induces variation of the inlet CF, thus changes the radial pressure gradient and leads to flow migration before leading edge(LE) in the cascades. Positive bowing drives the inlet flow to migrate from end walls to mid-span and negative bowing turns it to the reverse direction to build a new equilibrium. In addition, comparative studies indicate that the inlet Mach number and blade loading can efficiently impact the effectiveness of blade bowing on radial equilibrium in compressor design. 展开更多
关键词 axial compressor BOWING Cascade Circumferential fluctuation Inlet flow Radial equilibrium
原文传递
A Time-Marching Throughflow Model and its Application in Transonic Axial Compressor 被引量:9
18
作者 JIN Hai-liang JIN Dong-hai +1 位作者 LI Xiao-juan GUI Xing-min 《Journal of Thermal Science》 SCIE EI CAS CSCD 2010年第6期519-525,共7页
A throughflow model based on the time-marching finite volume approach is described in this paper. The governing equations are derived by circumferentially averaging the three-dimensional Navier-Stokes equations neglec... A throughflow model based on the time-marching finite volume approach is described in this paper. The governing equations are derived by circumferentially averaging the three-dimensional Navier-Stokes equations neglecting the circumferentially non-uniform and viscous terms. An inviscid blade force model similar to the Large-particle method is derived. The viscous blade force has been modeled by the distributed loss model. The convective fluxes of the governing equation are discretized with the Edward’s low-diffusion flux-splitting (LDFSS) scheme. And a point-iterative Symmetric Gauss-Seidel (SGS) scheme is used in the temporal discretization. The throughflow model has been applied to the NASA Rotor 67 and a high-load transonic fan stage ATS-2. The reasonable good agreements with the experiments and the 3D viscous computations show the potential of the method. 展开更多
关键词 throughflow model time marching TRANSONIC axial compressor
原文传递
Study on the Effects of End-bend Cantilevered Stator in a 2-stage Axial Compressor 被引量:9
19
作者 Songtao WANG Xin DU Zhongqi WANG Harbin Institute of Technology, P.O. BOX 458, Harbin 150001, China 《Journal of Thermal Science》 SCIE EI CAS CSCD 2009年第2期119-125,共7页
Leading edge recambering is applied to the cantilevered stator vanes in a 2-stage compressor in this paper. Differentcurving effects are produced when the end-bend stator vanes are stacked in different ways. Stacking ... Leading edge recambering is applied to the cantilevered stator vanes in a 2-stage compressor in this paper. Differentcurving effects are produced when the end-bend stator vanes are stacked in different ways. Stacking on theleading edge induces a positive curving effect near the casing.When it is stacked on the centre of gravity, a negativecurving effect takes place. The numerical investigation shows that the flow field is redistributed when theend-bend stators with leading edge stacking are applied. The variations in the stage matching for the mainstreamand near the hub have an impact on the performance of the 2-stage compressor. The isentropic efficiency and thetotal pressure ratio of the compressor are increased near the design condition. The compressor total pressure ratiois decreased near choke and near stall. The maximum flow rate is reduced and the stall margin is decreased. 展开更多
关键词 axial compressor end-bend blade stacking stage matching
原文传递
Relationship between the Flow Blockage of Tip Leakage Vortex and its Evolutionary Procedures inside the Rotor Passage of a Subsonic Axial Compressor 被引量:8
20
作者 DU Hui YU Xianjun +1 位作者 ZHANG Zhibo LIU Baojie 《Journal of Thermal Science》 SCIE EI CAS CSCD 2013年第6期522-531,共10页
The near casing flow fields inside the rotor passage of a 1.5 stage axial compressor with different blade-loading levels and tip gap sizes were measured by using stereoscopic particle image velocimetry(SPIV). Based on... The near casing flow fields inside the rotor passage of a 1.5 stage axial compressor with different blade-loading levels and tip gap sizes were measured by using stereoscopic particle image velocimetry(SPIV). Based on a carefully defined blockage extracting method, the variations of blockage parameter inside the blade passage were analyzed. It was found that the variation of blockage parameter appeared as a non-monotonic behavior inside the blade passage in most cases. This non-monotonic behavior became much more remarkable as the blade loading increases or mass flow rate decreases.The variations of the blockage parameter inside the blade passage had close relation to the evolutionary procedures of the tip leakage vortex(TLV). The destabilization of the TLV caused a rapid increasing of the blockage parameter. After the TLV lost the features of a concentrated streamwise vortex,the blockage parameter usually got a peak value. And then, because of the intense turbulent mixing between the TLV low momentum flow and its surrounding flows, the flow deficit inside the TLV recovered. 展开更多
关键词 tip leakage vortex flow blockage unsteady flow axial compressor TURBOMACHINERY
原文传递
上一页 1 2 56 下一页 到第
使用帮助 返回顶部