In this paper, the S-frames, the front side rail structures of automobile, were investigated for crashworthihess. Various cross-sections including regular polygon, nonconvex polygon and multi-cell with inner stiffener...In this paper, the S-frames, the front side rail structures of automobile, were investigated for crashworthihess. Various cross-sections including regular polygon, nonconvex polygon and multi-cell with inner stiffener sections were investigated in terms of energy absorption of S-frames. It was determined through extensive numerical simulation that a multi-celI S-frame with double vertical internal stiffeners can absorb more energy than the other configurations. Shape optimization was also carried out to improve energy absorption of the S-frame with a rectangular section. The center composite design of experiment and the sequential response surface method (SRSM) were adopted to construct the approximate design sub-problem, which was then solved by the feasible direction method. An innovative double S- frame was obtained from the optimal result. The optimum configuration of the S-frame was crushed numerically and more plastic hinges as well as shear zones were observed during the crush process. The energy absorption efficiency of the structure with the optimal configuration was improved compared to the initial configuration.展开更多
The classical problem of a round metal tube collapsing in concertina mode when subjected to axial compressive loading has been reexamined both theoretically and experimentally. The model including an eccentricity fa...The classical problem of a round metal tube collapsing in concertina mode when subjected to axial compressive loading has been reexamined both theoretically and experimentally. The model including an eccentricity factor proposed by Wierzbicki et al. and modified by Singace et al. has been taken one step further to obtain the real load-displacement history and to investigate eccentricity effects. The influence of the eccentricity parameter m on the mean crushing load was discussed according to the present analysis. Experiments were carried out to verify the eccentricity effects. The results show that experimental and theo- retical load-displacement curves match perfectly, especially in terms of half wavelength. Unlike previous re- searchs, the results suggest that m is not a fixed value and may affect energy absorption.展开更多
This paper presents a method to create concept models for the tapered thin-walled tubes using beam elements and spring elements.Developed concept tapered beam models with different taper angles and cross sections are ...This paper presents a method to create concept models for the tapered thin-walled tubes using beam elements and spring elements.Developed concept tapered beam models with different taper angles and cross sections are compared with those detailed models through impact analyses.Important crash results are recorded and compared,and the relatively good agreement is achieved between these analyses.Concept modeling steps are illustrated in detail,and a general concept modeling method for such thin-walled tubes is summarized and presented.展开更多
基金supported by the National Basic Research Programof China(2011CB610304)the National Natural Science Foundation of China(11172052)the National S&T Major Project(2012ZX04010-0114)
文摘In this paper, the S-frames, the front side rail structures of automobile, were investigated for crashworthihess. Various cross-sections including regular polygon, nonconvex polygon and multi-cell with inner stiffener sections were investigated in terms of energy absorption of S-frames. It was determined through extensive numerical simulation that a multi-celI S-frame with double vertical internal stiffeners can absorb more energy than the other configurations. Shape optimization was also carried out to improve energy absorption of the S-frame with a rectangular section. The center composite design of experiment and the sequential response surface method (SRSM) were adopted to construct the approximate design sub-problem, which was then solved by the feasible direction method. An innovative double S- frame was obtained from the optimal result. The optimum configuration of the S-frame was crushed numerically and more plastic hinges as well as shear zones were observed during the crush process. The energy absorption efficiency of the structure with the optimal configuration was improved compared to the initial configuration.
基金Supportedby the National Postdoctoral Science Foundation (No.2002-17) and the National Natural Science Foundation of China(No. 50275077)
文摘The classical problem of a round metal tube collapsing in concertina mode when subjected to axial compressive loading has been reexamined both theoretically and experimentally. The model including an eccentricity factor proposed by Wierzbicki et al. and modified by Singace et al. has been taken one step further to obtain the real load-displacement history and to investigate eccentricity effects. The influence of the eccentricity parameter m on the mean crushing load was discussed according to the present analysis. Experiments were carried out to verify the eccentricity effects. The results show that experimental and theo- retical load-displacement curves match perfectly, especially in terms of half wavelength. Unlike previous re- searchs, the results suggest that m is not a fixed value and may affect energy absorption.
文摘This paper presents a method to create concept models for the tapered thin-walled tubes using beam elements and spring elements.Developed concept tapered beam models with different taper angles and cross sections are compared with those detailed models through impact analyses.Important crash results are recorded and compared,and the relatively good agreement is achieved between these analyses.Concept modeling steps are illustrated in detail,and a general concept modeling method for such thin-walled tubes is summarized and presented.