The asymptotic development method is applied to analyze the free vibration of non-uniform axially functionally graded(AFG) beams, of which the governing equations are differential equations with variable coefficients....The asymptotic development method is applied to analyze the free vibration of non-uniform axially functionally graded(AFG) beams, of which the governing equations are differential equations with variable coefficients. By decomposing the variable flexural stiffness and mass per unit length into reference invariant and variant parts, the perturbation theory is introduced to obtain an approximate analytical formula of the natural frequencies of the non-uniform AFG beams with different boundary conditions.Furthermore, assuming polynomial distributions of Young's modulus and the mass density, the numerical results of the AFG beams with various taper ratios are obtained and compared with the published literature results. The discussion results illustrate that the proposed method yields an effective estimate of the first three order natural frequencies for the AFG tapered beams. However, the errors increase with the increase in the mode orders especially for the cases with variable heights. In brief, the asymptotic development method is verified to be simple and efficient to analytically study the free vibration of non-uniform AFG beams, and it could be used to analyze any tapered beams with an arbitrary varying cross width.展开更多
The natural frequencies of an axially moving beam were determined by using the method of multiple scales. The method of second-order multiple scales could be directly applied to the governing equation if the axial mot...The natural frequencies of an axially moving beam were determined by using the method of multiple scales. The method of second-order multiple scales could be directly applied to the governing equation if the axial motion of the beam is assumed to be small. It can be concluded that the natural frequencies affected by the axial motion are proportional to the square of the velocity of the axially moving beam. The results obtained by the perturbation method were compared with those given with a numerical method and the comparison shows the correctness of the multiple-scale method if the velocity is rather small.展开更多
Large deformation of a cantilever axially functionally graded (AFG) beam subject to a tip load is analytically studied using the homotopy analysis method (HAM). It is assumed that its Young’s modulus varies along the...Large deformation of a cantilever axially functionally graded (AFG) beam subject to a tip load is analytically studied using the homotopy analysis method (HAM). It is assumed that its Young’s modulus varies along the longitudinal direction according to a power law. Taking the solution of the corresponding homogeneous beam as the initial guess and obtaining a convergence region by adjusting an auxiliary parameter, the analytical expressions for large deformation of the AFG beam are provided. Results obtained by the HAM are compared with those obtained by the finite element method and those in the previous works to verify its validity. Good agreement is observed. A detailed parametric study is carried out. The results show that the axial material variation can greatly change the deformed configuration, which provides an approach to control and manage the deformation of beams. By tailoring the axial material distribution, a desired deformed configuration can be obtained for a specific load. The analytical solution presented herein can be a helpful tool for this procedure.展开更多
Based on the characteristics of an L-shaped column composed of concrete-filled square steel tubes, the axial compression experiment and nonlinear finite element analysis were carried out to study the mechanical proper...Based on the characteristics of an L-shaped column composed of concrete-filled square steel tubes, the axial compression experiment and nonlinear finite element analysis were carried out to study the mechanical property of the L-shaped column. The load-displacement curve for the L-shaped column, the deflection and load-strain curves for the mono columns were obtained by the axial compression experiment. The results show that the L-shaped column exhibits a flexural-torsional buckling failure mode. The numerical simulation by the finite element analysis shows that the bearing capacity and failure mode are in accordance with those of the axial compression experiment and the feasi- bility of the finite element analysis is proved. For the calculation of the bearing capacity of the L-shaped column com- posed of concrete-filled square steel tubes, an analytical method is proposed based on the theory of the elastic stability and spatial truss model. The results of the analytical method are in good agreement with those of the axial compression experiment and the finite element analysis.展开更多
Congenital cataract is the main cause of blindness in children, with significantly varying treatment effects. The development of axial length is an important factor that affects the prognosis of these children.However...Congenital cataract is the main cause of blindness in children, with significantly varying treatment effects. The development of axial length is an important factor that affects the prognosis of these children.However,when compared with the eyes of normal children,the mechanism of growth of the axial length is so complicated that the reported findings differ significantly in terms of the measuring apparatus,assessment methods,and statistical outcome,making the rule of axial length development still unclear. In this paper, we first review the process of axial length development in normal healthy children and compare different hypotheses about certain factors that could affect the development of axial length. The results of some current research about the characteristics of axial length development in congenital cataract children are then reviewed. Lastly, the advantages and disadvantages of current axial length measurements methods are compared and analyzed.The purpose of this review is to improve our understanding of the complexity and importance of axial length development and to suggest better use of axial length monitoring measurements in congenital cataract children for pediatric ophthalmologists,with the hope of offering assistance that will enhance long-term therapeutic effects for these children.展开更多
Slip line method for sintered powder materials under condition of axial symmetry is proposed based on the simplified yield condition of sintered powder materials and Haar-von Karman perfect plastic criterion. The equa...Slip line method for sintered powder materials under condition of axial symmetry is proposed based on the simplified yield condition of sintered powder materials and Haar-von Karman perfect plastic criterion. The equations of slip line and stress along slip line are derived, and numerical solutions are given. Deformation load in closed die upsetting of sintered copper cylinder is calculated by slip line method, and theoretical solutions are compared with experimental results.展开更多
The interaction between axially adjacent defects is more significant than that between circumferentially aligned defects.However,the existing failure pressure assessment methods cannot accurately predict the failure p...The interaction between axially adjacent defects is more significant than that between circumferentially aligned defects.However,the existing failure pressure assessment methods cannot accurately predict the failure pressure of axial adjacent defects.In the paper,the finite element model is adopted to analyze the influence of defect size,distribution mode and spacing between adjacent defects on failure pressure.A new failure pressure evaluation method is proposed by establishing the effective depth calculation model of corrosion colony with different distribution model.The burst test of X52 pipeline is carried out to verify the applicability of the method.It shows that the results of new method are consistent with the test results of pipeline with various defects and steel grades.展开更多
The measurement of pile axial load is of great significance to determining pile foundation design parameters such as skin friction and end bearing capacity and analyzing load transfer mechanisms.Affected by the temper...The measurement of pile axial load is of great significance to determining pile foundation design parameters such as skin friction and end bearing capacity and analyzing load transfer mechanisms.Affected by the temperature and ice content of frozen ground,the interface contact relationship between pile foundation and frozen soil is complicated,making pile axial load measurements more uncertain than that in non-frozen ground.Therefore,it is necessary to gain an in-depth understanding of the current pile axial load test methods.Four methods are systematically reviewed:vibrating wire sensors,strain gauges,sliding micrometers,and optical fiber strain sensors.At the same time,the applicability of the four test methods in frozen soil regions is discussed in detail.The first two methods are mature and commonly used.The sliding micrometer is only suitable for short-term measurement.While the Fiber Bragg grating(FBG)strain gauge meets the monitoring requirements,the Brillouin optical time-domain reflectometer(BOTDR)needs further verification.This paper aims to provide a technical reference for selecting and applying different methods in the pile axial load test for the stability study and bearing capacity assessment of pile foundations in cold regions.展开更多
In this paper,the local buckling of cylindrical long shells is discussed under axial pulse loads in a Hamiltonian system.Using this system,critical loads and modes of buckling of shells are reduced to symplectic eigen...In this paper,the local buckling of cylindrical long shells is discussed under axial pulse loads in a Hamiltonian system.Using this system,critical loads and modes of buckling of shells are reduced to symplectic eigenvalues and eigensolutions respectively.By the symplectic method,the solution of the local buckling of shells can be employed to the expansion series of symplectic eigensolutions in this system.As a result,relationships between critical buckling loads and other factors,such as length of pulse load,thickness of shells and circumferential orders,have been achieved.At the same time,symmetric and unsymmetric buckling modes have been discuss.Moreover,numerical results show that modes of post-buckling of shells can be Bamboo node-type,bending type,concave type and so on.Research in this paper provides analytical supports for ultimate load prediction and buckling failure assessment of cylindrical long shells under local axial pulse loads.展开更多
Granite is usually composed of quartz,biotite,feldspar,and cracks,and the variation characteristics of these components could reflect the deformation and failure process of rock well.Taking granite as an example,the v...Granite is usually composed of quartz,biotite,feldspar,and cracks,and the variation characteristics of these components could reflect the deformation and failure process of rock well.Taking granite as an example,the video camera was used to record the deformation and failure process of rock.The distribution of meso-components in video images was then identified.The meso-components of rock failure precursors were also discussed.Moreover,a modified LSTM(long short-term memory method)based on SSA(sparrow search algorithm)was proposed to estimate the change of meso-components of rock failure precursor.It shows that the initiation and expansion of cracks are mainly caused by feldspar and quartz fracture,and when the quartz and feldspar exit the stress framework,rock failure occurs;the second large increase of crack area and the second large decrease of quartz or feldspar area may be used as a precursor of rock failure;the precursor time of rock failure based on meso-scopic components is about 4 s earlier than that observed by the naked eye;the modified LSTM network has the strongest estimation ability for quartz area change,followed by feldspar and biotite,and has the worst estimation ability for cracks;when using the modified LSTM network to predict the precursors of rock instability and failure,quartz and feldspar could be given priority.The results presented herein may provide reference in the investigation of rock failure mechanism.展开更多
Based on the generalized Hamilton's principle,the nonlinear governing equation of an axially functionally graded(AFG)pipe is established.The non-trivial equilibrium configuration is superposed by the modal functio...Based on the generalized Hamilton's principle,the nonlinear governing equation of an axially functionally graded(AFG)pipe is established.The non-trivial equilibrium configuration is superposed by the modal functions of a simply supported beam.Via the direct multi-scale method,the response and stability boundary to the pulsating fluid velocity are solved analytically and verified by the differential quadrature element method(DQEM).The influence of Young's modulus gradient on the parametric resonance is investigated in the subcritical and supercritical regions.In general,the pipe in the supercritical region is more sensitive to the pulsating excitation.The nonlinearity changes from hard to soft,and the non-trivial equilibrium configuration introduces more frequency components to the vibration.Besides,the increasing Young's modulus gradient improves the critical pulsating flow velocity of the parametric resonance,and further enhances the stability of the system.In addition,when the temperature increases along the axial direction,reducing the gradient parameter can enhance the response asymmetry.This work further complements the theoretical analysis of pipes conveying pulsating fluid.展开更多
The particle residence time distribution(RTD)and axial dispersion coefficient are key parameters for the design and operation of a pressurized circulating fluidized bed(PCFB).In this study,the effects of pressure(0.1-...The particle residence time distribution(RTD)and axial dispersion coefficient are key parameters for the design and operation of a pressurized circulating fluidized bed(PCFB).In this study,the effects of pressure(0.1-0.6 MPa),fluidizing gas velocity(2-7 m·s^(-1)),and solid circulation rate(10-90 kg·m^(-2)·s^(-1))on particle RTD and axial dispersion coefficient in a PCFB are numerically investigated based on the multiphase particle-in-cell(MP-PIC)method.The details of the gas-solid flow behaviors of PCFB are revealed.Based on the gas-solid flow pattern,the particles tend to move more orderly under elevated pressures.With an increase in either fluidizing gas velocity or solid circulation rate,the mean residence time of particles decreases while the axial dispersion coefficient increases.With an increase in pressure,the core-annulus flow is strengthened,which leads to a wider shape of the particle RTD curve and a larger mean particle residence time.The back-mixing of particles increases with increasing pressure,resulting in an increase in the axial dispersion coefficient.展开更多
Due to the importance of vibration effects on the functional accuracy of mechanical systems,this research aims to develop a precise model of a nonlinearly vibrating single-link mobile flexible manipulator.The manipula...Due to the importance of vibration effects on the functional accuracy of mechanical systems,this research aims to develop a precise model of a nonlinearly vibrating single-link mobile flexible manipulator.The manipulator consists of an elastic arm,a rotary motor,and a rigid carrier,and undergoes general in-plane rigid body motion along with elastic transverse deformation.To accurately model the elastic behavior,Timoshenko’s beam theory is used to describe the flexible arm,which accounts for rotary inertia and shear deformation effects.By applying Newton’s second law,the nonlinear governing equations of motion for the manipulator are derived as a coupled system of ordinary differential equations(ODEs)and partial differential equations(PDEs).Then,the assumed mode method(AMM)is used to solve this nonlinear system of governing equations with appropriate shape functions.The assumed modes can be obtained after solving the characteristic equation of a Timoshenko beam with clamped boundary conditions at one end and an attached mass/inertia at the other.In addition,the effect of the transverse vibration of the inextensible arm on its axial behavior is investigated.Despite the axial rigidity,the effect makes the rigid body dynamics invalid for the axial behavior of the arm.Finally,numerical simulations are conducted to evaluate the performance of the developed model,and the results are compared with those obtained by the finite element approach.The comparison confirms the validity of the proposed dynamic model for the system.According to the mentioned features,this model can be reliable for investigating the system’s vibrational behavior and implementing vibration control algorithms.展开更多
The accurate parameters measurement of the flow field between the stages for axial compressors is a significant demand.This paper proposes an axial compressor inter-stage flow field high-precision test system,which ma...The accurate parameters measurement of the flow field between the stages for axial compressors is a significant demand.This paper proposes an axial compressor inter-stage flow field high-precision test system,which mainly consists of a probe motion scanning mechanism,fully automated test control software,and data processing methods.Iterative correction is applied to the original readings obtained from the scanning tests to enhance testing accuracy.Using this test system,detailed tests are conducted on a 1.5-stage subsonic axial compressor under different operating conditions.The test results effectively captured the impact of surface roughness and tip clearance variations on compressor performance.The distribution characteristics of parameters measured in inter-stage sections can characterize the effects of blade wake area and changes in aerodynamic performance at different blade heights.The developed test system can be extended to multi-stage compressors.展开更多
The non-linear forced vibration of axially moving viscoelastic beams excited by the vibration of the supporting foundation is investigated. A non-linear partial-differential equation governing the transverse motion is...The non-linear forced vibration of axially moving viscoelastic beams excited by the vibration of the supporting foundation is investigated. A non-linear partial-differential equation governing the transverse motion is derived from the dynamical, constitutive equations and geometrical relations. By referring to the quasi-static stretch assumption, the partial-differential non-linearity is reduced to an integro-partial-differential one. The method of multiple scales is directly applied to the governing equations with the two types of non-linearity, respectively. The amplitude of near- and exact-resonant steady state is analyzed by use of the solvability condition of eliminating secular terms. Numerical results are presented to show the contributions of foundation vibration amplitude, viscoelastic damping, and nonlinearity to the response amplitude for the first and the second mode.展开更多
Parametric vibration of an axially moving, elastic, tensioned beam with pulsating speed was investigated in the vicinity of subharmonic and combination resonance. The method of averaging was used to yield a set of aut...Parametric vibration of an axially moving, elastic, tensioned beam with pulsating speed was investigated in the vicinity of subharmonic and combination resonance. The method of averaging was used to yield a set of autonomous equations when the parametric excitation frequency is twice or the combination of the natural frequencies. Instability boundaries were presented in the plane of parametric frequency and amplitude. The analytical results were numerically verified. The effects of the viscoelastic damping, steady speed and tension on the instability boundaries were numerically demonsWated. It is found that the viscoelastic damping decreases the instability regions and the steady speed and the tension make the instability region drift along the frequency axis.展开更多
To investigate the principal resonance in transverse nonlinear parametric vibration of an axially accelerating viscoelastic string,the method of multiple scales is applied directly to the nonlinear partial differentia...To investigate the principal resonance in transverse nonlinear parametric vibration of an axially accelerating viscoelastic string,the method of multiple scales is applied directly to the nonlinear partial differential equation that governs the transverse vibration of the string.To derive the governing equation,Newton's second law,Lagrangean strain,and Kelvin's model are respectively used to account the dynamical relation,geometric nonlinearity and the viscoelasticity of the string material. Based on the solvability condition of eliminating the secular terms,closed form solutions are obtained for the amplitude and the existence conditions of nontrivial steady-state response of the principal parametric resonance.The Lyapunov linearized stability theory is employed to analyze the stability of the trivial and nontrivial solutions in the principal parametric resonance.Some numerical examples are presented to show the effects of the mean transport speed,the amplitude and the frequency of speed variation.展开更多
Structural components of varying thickness draw increasing attention these days due to economy and light-weight considerations. In view of the absence of research in vibration analysis of viscoelastic plate with varyi...Structural components of varying thickness draw increasing attention these days due to economy and light-weight considerations. In view of the absence of research in vibration analysis of viscoelastic plate with varying thickness, this study devotes to investigate the dynamic behaviors of axially moving viscoelastic plate with varying thickness. Based on the thin plate theory and the two-dimensional viscoelastic differential constitutive relation, the differential equation of motion of the axially moving viscoelastic rectangular plate is derived, the plate constituted by Kelvin-Voigt model has linearly varying thickness in the y-direction. The dimensionless complex frequencies of axially moving viscoelastic plate with four edges simply supported are calculated by the differential quadrature method, curves of real parts and imaginary parts of the first three-order dimensionless complex frequencies versus dimensionless moving speed are obtained, the effects of the aspect ratio, thickness ratio, the dimensionless moving speed and delay time on the dynamic behaviors of the axially moving viscoelastic rectangular plate with varying thickness are analyzed. When other parameters keep constant, with the decrease of thickness ratio, the real parts of the first three-order natural frequencies decrease, and the critical divergence speeds of various modes decrease too, moreover, whether the delay time is large or small, the frequencies are all complex numbers.展开更多
A convenient and universal residue calculus method is proposed to study the stochastic response behaviors of an axially moving viscoelastic beam with random noise excitations and fractional order constitutive relation...A convenient and universal residue calculus method is proposed to study the stochastic response behaviors of an axially moving viscoelastic beam with random noise excitations and fractional order constitutive relationship, where the random excitation can be decomposed as a nonstationary stochastic process, Mittag-Leffler internal noise, and external stationary noise excitation. Then, based on the Laplace transform approach, we derived the mean value function, variance function and covariance function through the Green's function technique and the residue calculus method, and obtained theoretical results. In some special case of fractional order derivative α , the Monte Carlo approach and error function results were applied to check the effectiveness of the analytical results, and good agreement was found. Finally in a general-purpose case, we also confirmed the analytical conclusion via the direct Monte Carlo simulation.展开更多
Traditional procedures to treat vibrations of gyroscopic continua involve direct application of perturbation methods to a system with both a strong gyroscopic term and other weakly coupled terms.In this study,a gyrosc...Traditional procedures to treat vibrations of gyroscopic continua involve direct application of perturbation methods to a system with both a strong gyroscopic term and other weakly coupled terms.In this study,a gyroscopic modes decoupling method is used to obtain an equivalent system with decoupled gyroscopic modes having only weak couplings.Taking the axially moving string as an example,the instability boundaries in the vicinity of parametric resonances are detected using both the traditional coupled gyroscopic system and our system with decoupled gyroscopic modes,and the results are compared to show the advantages and disadvantages of each method.展开更多
基金Project supported by the National Natural Science Foundation of China(No.11672008)
文摘The asymptotic development method is applied to analyze the free vibration of non-uniform axially functionally graded(AFG) beams, of which the governing equations are differential equations with variable coefficients. By decomposing the variable flexural stiffness and mass per unit length into reference invariant and variant parts, the perturbation theory is introduced to obtain an approximate analytical formula of the natural frequencies of the non-uniform AFG beams with different boundary conditions.Furthermore, assuming polynomial distributions of Young's modulus and the mass density, the numerical results of the AFG beams with various taper ratios are obtained and compared with the published literature results. The discussion results illustrate that the proposed method yields an effective estimate of the first three order natural frequencies for the AFG tapered beams. However, the errors increase with the increase in the mode orders especially for the cases with variable heights. In brief, the asymptotic development method is verified to be simple and efficient to analytically study the free vibration of non-uniform AFG beams, and it could be used to analyze any tapered beams with an arbitrary varying cross width.
基金Project supported by the National Natural Science Foundation of China (Grant No.10472060)
文摘The natural frequencies of an axially moving beam were determined by using the method of multiple scales. The method of second-order multiple scales could be directly applied to the governing equation if the axial motion of the beam is assumed to be small. It can be concluded that the natural frequencies affected by the axial motion are proportional to the square of the velocity of the axially moving beam. The results obtained by the perturbation method were compared with those given with a numerical method and the comparison shows the correctness of the multiple-scale method if the velocity is rather small.
基金Project supported by the China Postdoctoral Science Foundation(No.2018M630167)
文摘Large deformation of a cantilever axially functionally graded (AFG) beam subject to a tip load is analytically studied using the homotopy analysis method (HAM). It is assumed that its Young’s modulus varies along the longitudinal direction according to a power law. Taking the solution of the corresponding homogeneous beam as the initial guess and obtaining a convergence region by adjusting an auxiliary parameter, the analytical expressions for large deformation of the AFG beam are provided. Results obtained by the HAM are compared with those obtained by the finite element method and those in the previous works to verify its validity. Good agreement is observed. A detailed parametric study is carried out. The results show that the axial material variation can greatly change the deformed configuration, which provides an approach to control and manage the deformation of beams. By tailoring the axial material distribution, a desired deformed configuration can be obtained for a specific load. The analytical solution presented herein can be a helpful tool for this procedure.
基金Foundation of Key Laboratory of Coast Civil Structure Safety (Tianjin University),Ministry of EducationChinese Program for New Century Excellent Talents in University+1 种基金Seed Foundation of Tianjin UniversitySeed Foundation of Xinjiang University
文摘Based on the characteristics of an L-shaped column composed of concrete-filled square steel tubes, the axial compression experiment and nonlinear finite element analysis were carried out to study the mechanical property of the L-shaped column. The load-displacement curve for the L-shaped column, the deflection and load-strain curves for the mono columns were obtained by the axial compression experiment. The results show that the L-shaped column exhibits a flexural-torsional buckling failure mode. The numerical simulation by the finite element analysis shows that the bearing capacity and failure mode are in accordance with those of the axial compression experiment and the feasi- bility of the finite element analysis is proved. For the calculation of the bearing capacity of the L-shaped column com- posed of concrete-filled square steel tubes, an analytical method is proposed based on the theory of the elastic stability and spatial truss model. The results of the analytical method are in good agreement with those of the axial compression experiment and the finite element analysis.
基金Key Program for Clinical Discipline of Ministry of Health between 2010 and 2012(Grant No.2010-2012-439-175)
文摘Congenital cataract is the main cause of blindness in children, with significantly varying treatment effects. The development of axial length is an important factor that affects the prognosis of these children.However,when compared with the eyes of normal children,the mechanism of growth of the axial length is so complicated that the reported findings differ significantly in terms of the measuring apparatus,assessment methods,and statistical outcome,making the rule of axial length development still unclear. In this paper, we first review the process of axial length development in normal healthy children and compare different hypotheses about certain factors that could affect the development of axial length. The results of some current research about the characteristics of axial length development in congenital cataract children are then reviewed. Lastly, the advantages and disadvantages of current axial length measurements methods are compared and analyzed.The purpose of this review is to improve our understanding of the complexity and importance of axial length development and to suggest better use of axial length monitoring measurements in congenital cataract children for pediatric ophthalmologists,with the hope of offering assistance that will enhance long-term therapeutic effects for these children.
文摘Slip line method for sintered powder materials under condition of axial symmetry is proposed based on the simplified yield condition of sintered powder materials and Haar-von Karman perfect plastic criterion. The equations of slip line and stress along slip line are derived, and numerical solutions are given. Deformation load in closed die upsetting of sintered copper cylinder is calculated by slip line method, and theoretical solutions are compared with experimental results.
基金supported by the Key Scientific Research Projects of Colleges and Universities in Henan Province(Grant No.23A560013)the National Key R&D Program of the“14th Five-Year Plan”(Grant No.2022YFC3801001)+1 种基金Henan Provincial Youth Science Foundation(Grant No.232300421328)the Leading Talents in Zhongyuan Technology Innovation(Grant No.234200510014).
文摘The interaction between axially adjacent defects is more significant than that between circumferentially aligned defects.However,the existing failure pressure assessment methods cannot accurately predict the failure pressure of axial adjacent defects.In the paper,the finite element model is adopted to analyze the influence of defect size,distribution mode and spacing between adjacent defects on failure pressure.A new failure pressure evaluation method is proposed by establishing the effective depth calculation model of corrosion colony with different distribution model.The burst test of X52 pipeline is carried out to verify the applicability of the method.It shows that the results of new method are consistent with the test results of pipeline with various defects and steel grades.
基金This study was supported by the Strategic Priority Research Program of the Chinese Academy of Science(Grant No.XDA20020102)Science and Technology Project of State Grid Corporation of China(Contract No.SGQHDKYOSBJS201600077)+1 种基金National Natural Science Foundation of China(Grant No.41101065)the State Key Laboratory of Frozen Soil Engineering Foundation(Grant No.SKLFSE-ZT-34)。
文摘The measurement of pile axial load is of great significance to determining pile foundation design parameters such as skin friction and end bearing capacity and analyzing load transfer mechanisms.Affected by the temperature and ice content of frozen ground,the interface contact relationship between pile foundation and frozen soil is complicated,making pile axial load measurements more uncertain than that in non-frozen ground.Therefore,it is necessary to gain an in-depth understanding of the current pile axial load test methods.Four methods are systematically reviewed:vibrating wire sensors,strain gauges,sliding micrometers,and optical fiber strain sensors.At the same time,the applicability of the four test methods in frozen soil regions is discussed in detail.The first two methods are mature and commonly used.The sliding micrometer is only suitable for short-term measurement.While the Fiber Bragg grating(FBG)strain gauge meets the monitoring requirements,the Brillouin optical time-domain reflectometer(BOTDR)needs further verification.This paper aims to provide a technical reference for selecting and applying different methods in the pile axial load test for the stability study and bearing capacity assessment of pile foundations in cold regions.
基金This research is funded by the grants from Dalian Project of Innovation Foundation of Science and Technology(No.2018J11CY005)Research Program of State Key Laboratory of Structural Analysis for Industrial Equipment(No.S18313).
文摘In this paper,the local buckling of cylindrical long shells is discussed under axial pulse loads in a Hamiltonian system.Using this system,critical loads and modes of buckling of shells are reduced to symplectic eigenvalues and eigensolutions respectively.By the symplectic method,the solution of the local buckling of shells can be employed to the expansion series of symplectic eigensolutions in this system.As a result,relationships between critical buckling loads and other factors,such as length of pulse load,thickness of shells and circumferential orders,have been achieved.At the same time,symmetric and unsymmetric buckling modes have been discuss.Moreover,numerical results show that modes of post-buckling of shells can be Bamboo node-type,bending type,concave type and so on.Research in this paper provides analytical supports for ultimate load prediction and buckling failure assessment of cylindrical long shells under local axial pulse loads.
基金Project(41472254)supported by the National Natural Science Foundation of China。
文摘Granite is usually composed of quartz,biotite,feldspar,and cracks,and the variation characteristics of these components could reflect the deformation and failure process of rock well.Taking granite as an example,the video camera was used to record the deformation and failure process of rock.The distribution of meso-components in video images was then identified.The meso-components of rock failure precursors were also discussed.Moreover,a modified LSTM(long short-term memory method)based on SSA(sparrow search algorithm)was proposed to estimate the change of meso-components of rock failure precursor.It shows that the initiation and expansion of cracks are mainly caused by feldspar and quartz fracture,and when the quartz and feldspar exit the stress framework,rock failure occurs;the second large increase of crack area and the second large decrease of quartz or feldspar area may be used as a precursor of rock failure;the precursor time of rock failure based on meso-scopic components is about 4 s earlier than that observed by the naked eye;the modified LSTM network has the strongest estimation ability for quartz area change,followed by feldspar and biotite,and has the worst estimation ability for cracks;when using the modified LSTM network to predict the precursors of rock instability and failure,quartz and feldspar could be given priority.The results presented herein may provide reference in the investigation of rock failure mechanism.
基金Project supported by the National Natural Science Foundation of China (Nos.12002195 and 12372015)the National Science Fund for Distinguished Young Scholars of China (No.12025204)the Program of Shanghai Municipal Education Commission of China (No.2019-01-07-00-09-E00018)。
文摘Based on the generalized Hamilton's principle,the nonlinear governing equation of an axially functionally graded(AFG)pipe is established.The non-trivial equilibrium configuration is superposed by the modal functions of a simply supported beam.Via the direct multi-scale method,the response and stability boundary to the pulsating fluid velocity are solved analytically and verified by the differential quadrature element method(DQEM).The influence of Young's modulus gradient on the parametric resonance is investigated in the subcritical and supercritical regions.In general,the pipe in the supercritical region is more sensitive to the pulsating excitation.The nonlinearity changes from hard to soft,and the non-trivial equilibrium configuration introduces more frequency components to the vibration.Besides,the increasing Young's modulus gradient improves the critical pulsating flow velocity of the parametric resonance,and further enhances the stability of the system.In addition,when the temperature increases along the axial direction,reducing the gradient parameter can enhance the response asymmetry.This work further complements the theoretical analysis of pipes conveying pulsating fluid.
基金Financial support of this work by National Natural Science Foundation of China(51976037)。
文摘The particle residence time distribution(RTD)and axial dispersion coefficient are key parameters for the design and operation of a pressurized circulating fluidized bed(PCFB).In this study,the effects of pressure(0.1-0.6 MPa),fluidizing gas velocity(2-7 m·s^(-1)),and solid circulation rate(10-90 kg·m^(-2)·s^(-1))on particle RTD and axial dispersion coefficient in a PCFB are numerically investigated based on the multiphase particle-in-cell(MP-PIC)method.The details of the gas-solid flow behaviors of PCFB are revealed.Based on the gas-solid flow pattern,the particles tend to move more orderly under elevated pressures.With an increase in either fluidizing gas velocity or solid circulation rate,the mean residence time of particles decreases while the axial dispersion coefficient increases.With an increase in pressure,the core-annulus flow is strengthened,which leads to a wider shape of the particle RTD curve and a larger mean particle residence time.The back-mixing of particles increases with increasing pressure,resulting in an increase in the axial dispersion coefficient.
文摘Due to the importance of vibration effects on the functional accuracy of mechanical systems,this research aims to develop a precise model of a nonlinearly vibrating single-link mobile flexible manipulator.The manipulator consists of an elastic arm,a rotary motor,and a rigid carrier,and undergoes general in-plane rigid body motion along with elastic transverse deformation.To accurately model the elastic behavior,Timoshenko’s beam theory is used to describe the flexible arm,which accounts for rotary inertia and shear deformation effects.By applying Newton’s second law,the nonlinear governing equations of motion for the manipulator are derived as a coupled system of ordinary differential equations(ODEs)and partial differential equations(PDEs).Then,the assumed mode method(AMM)is used to solve this nonlinear system of governing equations with appropriate shape functions.The assumed modes can be obtained after solving the characteristic equation of a Timoshenko beam with clamped boundary conditions at one end and an attached mass/inertia at the other.In addition,the effect of the transverse vibration of the inextensible arm on its axial behavior is investigated.Despite the axial rigidity,the effect makes the rigid body dynamics invalid for the axial behavior of the arm.Finally,numerical simulations are conducted to evaluate the performance of the developed model,and the results are compared with those obtained by the finite element approach.The comparison confirms the validity of the proposed dynamic model for the system.According to the mentioned features,this model can be reliable for investigating the system’s vibrational behavior and implementing vibration control algorithms.
基金National Science and Technology Major Project of China No.2017-V-0012-0064。
文摘The accurate parameters measurement of the flow field between the stages for axial compressors is a significant demand.This paper proposes an axial compressor inter-stage flow field high-precision test system,which mainly consists of a probe motion scanning mechanism,fully automated test control software,and data processing methods.Iterative correction is applied to the original readings obtained from the scanning tests to enhance testing accuracy.Using this test system,detailed tests are conducted on a 1.5-stage subsonic axial compressor under different operating conditions.The test results effectively captured the impact of surface roughness and tip clearance variations on compressor performance.The distribution characteristics of parameters measured in inter-stage sections can characterize the effects of blade wake area and changes in aerodynamic performance at different blade heights.The developed test system can be extended to multi-stage compressors.
基金Project supported by the National Natural Science Foundation of China (No. 10472060)Natural Science Founda-tion of Shanghai Municipality (No. 04ZR14058)Doctor Start-up Foundation of Shenyang Institute of Aeronautical Engineering (No. 05YB04).
文摘The non-linear forced vibration of axially moving viscoelastic beams excited by the vibration of the supporting foundation is investigated. A non-linear partial-differential equation governing the transverse motion is derived from the dynamical, constitutive equations and geometrical relations. By referring to the quasi-static stretch assumption, the partial-differential non-linearity is reduced to an integro-partial-differential one. The method of multiple scales is directly applied to the governing equations with the two types of non-linearity, respectively. The amplitude of near- and exact-resonant steady state is analyzed by use of the solvability condition of eliminating secular terms. Numerical results are presented to show the contributions of foundation vibration amplitude, viscoelastic damping, and nonlinearity to the response amplitude for the first and the second mode.
文摘Parametric vibration of an axially moving, elastic, tensioned beam with pulsating speed was investigated in the vicinity of subharmonic and combination resonance. The method of averaging was used to yield a set of autonomous equations when the parametric excitation frequency is twice or the combination of the natural frequencies. Instability boundaries were presented in the plane of parametric frequency and amplitude. The analytical results were numerically verified. The effects of the viscoelastic damping, steady speed and tension on the instability boundaries were numerically demonsWated. It is found that the viscoelastic damping decreases the instability regions and the steady speed and the tension make the instability region drift along the frequency axis.
基金The project supported by the National Natural Science Foundation of China (10172056)
文摘To investigate the principal resonance in transverse nonlinear parametric vibration of an axially accelerating viscoelastic string,the method of multiple scales is applied directly to the nonlinear partial differential equation that governs the transverse vibration of the string.To derive the governing equation,Newton's second law,Lagrangean strain,and Kelvin's model are respectively used to account the dynamical relation,geometric nonlinearity and the viscoelasticity of the string material. Based on the solvability condition of eliminating the secular terms,closed form solutions are obtained for the amplitude and the existence conditions of nontrivial steady-state response of the principal parametric resonance.The Lyapunov linearized stability theory is employed to analyze the stability of the trivial and nontrivial solutions in the principal parametric resonance.Some numerical examples are presented to show the effects of the mean transport speed,the amplitude and the frequency of speed variation.
基金supported by National Natural Science Foundation of China(Grant No.10872163)Natural Science Research Project of Shanxi Province Office of Education, China (Grant No.08JK394)Foundation of Excellent Doctoral Dissertations of Xi’an University of Technology, China
文摘Structural components of varying thickness draw increasing attention these days due to economy and light-weight considerations. In view of the absence of research in vibration analysis of viscoelastic plate with varying thickness, this study devotes to investigate the dynamic behaviors of axially moving viscoelastic plate with varying thickness. Based on the thin plate theory and the two-dimensional viscoelastic differential constitutive relation, the differential equation of motion of the axially moving viscoelastic rectangular plate is derived, the plate constituted by Kelvin-Voigt model has linearly varying thickness in the y-direction. The dimensionless complex frequencies of axially moving viscoelastic plate with four edges simply supported are calculated by the differential quadrature method, curves of real parts and imaginary parts of the first three-order dimensionless complex frequencies versus dimensionless moving speed are obtained, the effects of the aspect ratio, thickness ratio, the dimensionless moving speed and delay time on the dynamic behaviors of the axially moving viscoelastic rectangular plate with varying thickness are analyzed. When other parameters keep constant, with the decrease of thickness ratio, the real parts of the first three-order natural frequencies decrease, and the critical divergence speeds of various modes decrease too, moreover, whether the delay time is large or small, the frequencies are all complex numbers.
基金supported by the National Natural Science Foundation of China (11172233, 10932009 and 10972181)Program for New Century Excellent Talents in University+1 种基金the Shaanxi Project for Young New Star in Science & TechnologyNPU Foundation for Fundamental Research and New Faculties and Research Area Project
文摘A convenient and universal residue calculus method is proposed to study the stochastic response behaviors of an axially moving viscoelastic beam with random noise excitations and fractional order constitutive relationship, where the random excitation can be decomposed as a nonstationary stochastic process, Mittag-Leffler internal noise, and external stationary noise excitation. Then, based on the Laplace transform approach, we derived the mean value function, variance function and covariance function through the Green's function technique and the residue calculus method, and obtained theoretical results. In some special case of fractional order derivative α , the Monte Carlo approach and error function results were applied to check the effectiveness of the analytical results, and good agreement was found. Finally in a general-purpose case, we also confirmed the analytical conclusion via the direct Monte Carlo simulation.
基金the National Natural Science Foundation of China(Grants 11772009,11672007)the Beijing Municipal Natural Science Foundation(Grant 3172003).
文摘Traditional procedures to treat vibrations of gyroscopic continua involve direct application of perturbation methods to a system with both a strong gyroscopic term and other weakly coupled terms.In this study,a gyroscopic modes decoupling method is used to obtain an equivalent system with decoupled gyroscopic modes having only weak couplings.Taking the axially moving string as an example,the instability boundaries in the vicinity of parametric resonances are detected using both the traditional coupled gyroscopic system and our system with decoupled gyroscopic modes,and the results are compared to show the advantages and disadvantages of each method.