期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Study of Axial Vibration of a Motor-Compressor System Using Operational Modal Analysis
1
作者 M.Farid Yahya Reduan Mat Dan +2 位作者 M.Fadzlee Samsubaha Zaini Rashid Azma Putra 《Sound & Vibration》 EI 2023年第1期119-131,共13页
A case study of excessive vibration on a motor-compressor system is presented in this paper.After barely two months of operation,the reciprocating compressor motor’s routine monitoring revealed excessive axial vibrat... A case study of excessive vibration on a motor-compressor system is presented in this paper.After barely two months of operation,the reciprocating compressor motor’s routine monitoring revealed excessive axial vibration amplitude.For this reason,the Operational Modal Analysis(OMA)was carried out in order to identify the pri-mary cause.According to the investigation,one of the harmonic components which was 18 times the motor’s running speed matched with a resonance frequency of 112 Hz.According to OMA study,the motor was vibrating in torsional motion because the compressor’s load had stimulated the entire motor-compressor unit at this reso-nance frequency.The analysis also demonstrates the bulging effect of the motor shaft’s axial vibration on the motor’s endplate. 展开更多
关键词 axial vibration operational modal analysis rotating machinery
下载PDF
Identification of Axial Vibration Excitation Source in Vehicle Engine Crankshafts Using an Auto-regressive and Moving Average Model 被引量:3
2
作者 LIANG Xingyu WANG Yuesen +3 位作者 SHU Gequn WEI Haiqiao DONG Lihui MEI Yifan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第6期1022-1027,共6页
Violent axial vibration of a vehicle engine crankshaft might lead to multiple defects to the engine.Much research on mechanism and control measures has been done on engines,such as using the dynamic stiffness matrix m... Violent axial vibration of a vehicle engine crankshaft might lead to multiple defects to the engine.Much research on mechanism and control measures has been done on engines,such as using the dynamic stiffness matrix method,rayleigh differential method,and system matrix method.But the source of axial vibration has not been identified clearly because there are many excitation factors for the axial vibration of a crankshaft,such as coupled torsional-axial vibration and coupled bending-axial vibration,etc.In order to improve the calculation reliability and identify the excitation source of axial vibration of in vehicle engine crankshafts,this paper presents a method to identify the axial vibration excitation source of crankshafts for high speed diesel engines based on an auto-regressive and moving average(ARMA) model.Through determining initial moving average variables and measuring axial /bending/torsional vibrations of a crankshaft at the free-end of a 4-cylinder diesel engine,autoregressive spectrum analysis is applied to the measured vibration signal.The results show that the axial vibration of the crankshaft is mainly excited by coupled bending vibration at high speed.But at low speed,the axial vibration in some frequencies is excited primarily by torsional excitation.Through investigation of axial vibration source of engine crankshafts,calculation accuracy of vibration can be improved significantly. 展开更多
关键词 automotive engine CRANKSHAFT axial vibration excitation source ARMA
下载PDF
Axial Vibration Analysis of the Mud Recovery Line on Deepwater Riserless Mud Recovery Drilling System
3
作者 王国栋 陈国明 +1 位作者 许亮斌 殷志明 《China Ocean Engineering》 SCIE EI CSCD 2014年第3期381-390,共10页
The series connection of multistage pumping module is the common concept of deepwater riserless mud recovery drilling system. In this system, the influence of the mass of pumping module on the vibration of mud recover... The series connection of multistage pumping module is the common concept of deepwater riserless mud recovery drilling system. In this system, the influence of the mass of pumping module on the vibration of mud recovery line cannot be ignored, and the lumped mass method has been utilized to discretize the mud recovery line. Based on the analysis of different boundary conditions, the paper establishes the axial forced vibration model of the mud recovery line considering the seawater damping, and the vibration model analysis provides the universal solution to the vibration model. An example of the two-stage pumping system has been used to analyze the dynamic response of mud recovery line under different excited frequencies. This paper has the important directive significance for the application of riserless mud recovery drilling technology in deepwater surface drilling. 展开更多
关键词 riserless mud recovery drilling lumped mass method mud recovery line axial vibration analysis
下载PDF
The Axial Nonlinear Vibration Analysis of Ball-screw about Machine Tool Feeding System 被引量:2
4
作者 ZENG Hao-ran LIU Nian-cong +2 位作者 YANG Jia-rui CHEN Jian-long GENG Wei-tao 《International Journal of Plant Engineering and Management》 2016年第3期181-192,共12页
The forced state of the ball-screw of machine tool feeding system is analyzed. The ball-screw is simplified as Timoshenko beam and the differential equation of motion for the ball-screw is built. To obtain the axial v... The forced state of the ball-screw of machine tool feeding system is analyzed. The ball-screw is simplified as Timoshenko beam and the differential equation of motion for the ball-screw is built. To obtain the axial vibration equation,the differential equation of motion is simplified using the assumed mode method. Axial vibration equation is in form of Duffing equation and has the characteristics of nonlinearity. The numerical simulation of Duffing equation is proceeded by MATLAB / Simulink. The effect of screw length,exciting force and damping coefficient are researched,and the axial vibration phase track diagram and Poincare section are obtained. The stability and period of the axial vibration are analyzed. The limit cycle of phase track diagram is enclosed. Axial vibration has two type-center singularity distributions on both sides of the origin. The singularity attracts vibration to reach a stable state,and Poincare section shows that axial vibration appears chaotic motion and quasi periodic motion or periodic motion. Singularity position changes with the vibration system parameters,while the distribution doesn’ t change. The period of the vibration is enhanced with increasing frequency and damping coefficient. Test of the feeding system ball-screw axial vibration exists chaos movement. This paper provides a certain theoretical basis for the dynamic characteristic analysis of machine feeding system ball-screw and optimization of structural parameters. 展开更多
关键词 ball screw Timoshenko beam axial vibration phase diagram Poincare section
下载PDF
Research on Surface Roughness of Supersonic Vibration Auxiliary Side Milling for Titanium Alloy
5
作者 Xuetao Wei Caixu Yue +3 位作者 Desheng Hu Xianli Liu Yunpeng Ding Steven Y.Liang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第5期100-111,共12页
The processed surface contour shape is extracted with the finite element simulation software.The difference value of contour shape change is used as the parameters of balancing surface roughness to construct finite el... The processed surface contour shape is extracted with the finite element simulation software.The difference value of contour shape change is used as the parameters of balancing surface roughness to construct finite element model of supersonic vibration milling in cutting stability domain.The surface roughness trial scheme is designed in the orthogonal test design method to analyze the surface roughness test result in the response surface methodology.The surface roughness prediction model is established and optimized.Finally,the surface roughness finite element simulation prediction model is verified by experiments.The research results show that,compared with the experiment results,the error range of the finite element simulation model is 27.5%–30.9%,and the error range of the empirical model obtained by the response surface method is between 4.4%and 12.3%.So,the model in this paper is accurate and will provide the theoretical basis for the optimization study of the auxiliary milling process of supersonic vibration. 展开更多
关键词 Side milling axial vibration Ultrasonic milling Finite element simulation Linear regression Surface roughness
下载PDF
A Method of Evaluating the Effectiveness of a Hydraulic Oscillator in Horizontal Wells
6
作者 Zhen Zhong Yadong Li +1 位作者 Yuxuan Zhao Pengfei Ju 《Sound & Vibration》 EI 2023年第1期15-27,共13页
Bent-housing motor is the most widely used directional drilling tool,but it often encounters the problem of high friction when sliding drilling in horizontal wells.In this paper,a mathematical model is proposed to sim... Bent-housing motor is the most widely used directional drilling tool,but it often encounters the problem of high friction when sliding drilling in horizontal wells.In this paper,a mathematical model is proposed to simulate slide drilling with a friction reduction tool of axial vibration.A term called dynamic effective tractoring force(DETF)is defined and used to evaluate friction reduction effectiveness.The factors influencing the DETF are studied,and the tool placement optimization problem is investigated.The studyfinds that the drilling rate of penetration(ROP)can lower the DETF but does not change the trend of the DETF curve.To effectively work,the shock tool stiffness must be greater than some critical value.For the case study,the best oscillating frequency is within 15∼20 Hz.The reflection of the vibration at the bit boundary can intensify or weaken the friction reduction effec-tiveness,depending on the distance between the hydraulic oscillator and the bit.The optimal placement position corresponds to the plateau stage of the DETF curve.The reliability of the method is verified by thefield tests.The proposed method can provide a design and use guide to hydraulic oscillators and improve friction reduction effectiveness in horizontal wells. 展开更多
关键词 Hydraulic oscillator axial vibration friction reduction dynamic effective tractoring force placement optimization
下载PDF
Forced vibration control of an axially moving beam with an attached nonlinear energy sink 被引量:11
7
作者 Ye-Wei Zhang Shuai Hou +2 位作者 Ke-Fan Xu Tian-Zhi Yang Li-Qun Chen 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2017年第6期674-682,共9页
This paper investigates a highly efficient and promising control method for forced vibration control of an axially moving beam with an attached nonlinear energy sink(NES).Because of the axial velocity,external force... This paper investigates a highly efficient and promising control method for forced vibration control of an axially moving beam with an attached nonlinear energy sink(NES).Because of the axial velocity,external force and external excitation frequency,the beam undergoes a high-amplitude vibration.The Galerkin method is applied to discretize the dynamic equations of the beam–NES system.The steady-state responses of the beams with an attached NES and with nothing attached are acquired by numerical simulation.Furthermore,the fast Fourier transform(FFT)is applied to get the amplitude–frequency responses.From the perspective of frequency domain analysis,it is explained that the NES has little effect on the natural frequency of the beam.Results confirm that NES has a great potential to control the excessive vibration. 展开更多
关键词 Forced vibration axially moving beam FFT Nonlinear energy sink(NES) External excitation frequency
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部