Compared with the conventional Charpy impact test method,the oscillographic impact test can help in the behavioral analysis of materials during the fracture process.In this study,the trade-off relationship between the...Compared with the conventional Charpy impact test method,the oscillographic impact test can help in the behavioral analysis of materials during the fracture process.In this study,the trade-off relationship between the strength and toughness of a DZ2 axle steel at various tempering temperatures and the cause of the improvement in impact toughness was evaluated.The tempering process dramatically influenced carbide precipitation behavior,which resulted in different aspect ratios of carbides.Impact toughness improved along with the rise in tempering temperature mainly due to the increase in energy required in impact crack propagation.The characteristics of the impact crack propagation process were studied through a comprehensive analysis of stress distribution,oscilloscopic impact statistics,fracture morphology,and carbide morphology.The poor impact toughness of low-tempering-temperature specimens was attributed to the increased number of stress concentration points caused by carbide morphology in the small plastic zone during the propagation process,which resulted in a mixed distribution of brittle and ductile fractures on the fracture surface.展开更多
Reasonable distribution of braking force is a factor for a smooth,safe,and comfortable braking of trains.A dynamic optimal allocation strategy of electric-air braking force is proposed in this paper to solve the probl...Reasonable distribution of braking force is a factor for a smooth,safe,and comfortable braking of trains.A dynamic optimal allocation strategy of electric-air braking force is proposed in this paper to solve the problem of the lack of consideration of adhesion difference of train wheelsets in the existing high-speed train electric-air braking force optimal allocation strategies.In this method,the braking strategy gives priority to the use of electric braking force.The force model of a single train in the braking process is analyzed to calculate the change of adhesion between the wheel and rail of each wheelset after axle load transfer,and then the adhesion of the train is estimated in real time.Next,with the goal of maximizing the total adhesion utilization ratio of trailer/motor vehicles,a linear programming distribution function is constructed.The proportional coefficient of adhesion utilization ratio of each train and the application upper limit of braking force in the function is updated according to the change time point of wheelset adhesion.Finally,the braking force is dynamically allocated.The simulation results of Matlab/Simulink show that the proposed algorithm not only uses the different adhesion limits of each trailer to reduce the total amount of braking force undertaken by the motor vehicle,but also considers the adhesion difference of each wheelset.The strategy can effectively reduce the risk and time of motor vehicles during the braking process and improve the stability of the train braking.展开更多
Bituminous materials are heat-sensitive, and their mechanical properties vary with temperature. This variation in properties is not without consequences on the performance of flexible road structures under the repeate...Bituminous materials are heat-sensitive, and their mechanical properties vary with temperature. This variation in properties is not without consequences on the performance of flexible road structures under the repeated passage of multi-axles. This study determines the influence of seasonal variations on the rate of permanent deformation, the rut depth of flexible pavements and the effect of alternating loading of heavy goods vehicles following the temperature variations on the durability of roads. Thus, an ambient and pavement surface temperature measurement was carried out in 2022. The temperature profile at different layers of the modelled pavement, the evaluation of deformation rates and rutting depth were determined using several models. The results show that the permanent deformation and rutting rates are higher at the level of the bituminous concrete layer than at the level of the asphalt gravel layer because the stresses decrease from the surface to the depth of the pavement. On the other hand, the variations in these rates, permanent deformations and ruts between the hot and so-called cold periods are more pronounced in the bitumen gravel than in bituminous concrete, showing that gravel bitumen is more sensitive to temperature variations than bituminous concrete despite its higher rigidity. Of these results, we suggested a periodic and alternating loading of the different types of heavy goods vehicles. These loads consist of fully applying the WAEMU standards with a tolerance of 15% during periods of high and low temperatures. This regulation has increased 2 to 3 times in the durability of roadways depending on the type of heavy goods vehicle.展开更多
As a key safety component of the high-speed train, fatigue fracture of the axle would lead to major accidents such as derailment or overturning. The complexity of the axle dynamic stress test seriously enhances the di...As a key safety component of the high-speed train, fatigue fracture of the axle would lead to major accidents such as derailment or overturning. The complexity of the axle dynamic stress test seriously enhances the difficulty of axle fatigue damage analysis. In this paper, the dynamic stress test of the high-speed train axle was carried out,the axle box acceleration was monitored on-track during the test, and the relationship between the axle stress spectrum and acceleration was analyzed on-track. The results show that the relationships between the axle equivalent stresses and the Root Mean Square(RMS) values of the axle box vertical acceleration and lateral acceleration exhibit a strong joint probability density distribution. The concept of the virtual surface density of wheel-rail contact is also proposed to realize the purpose of using axle box acceleration to deduce axle equivalent force. The results quantify the relationship between axle box acceleration and axle equivalent force, provide a new method for predicting the axle damage using the acceleration RMS values, and open up a new approach for structural health monitoring of high-speed train axles.展开更多
Background: The availability of premium intraocular lenses (IOL), including toric, multifocal, and EDOF, has become very sophisticated and now demands accurate biometric measurement accuracy. The Pentacam AXL and IOL ...Background: The availability of premium intraocular lenses (IOL), including toric, multifocal, and EDOF, has become very sophisticated and now demands accurate biometric measurement accuracy. The Pentacam AXL and IOL Master 700 are often used for optical biometry and they are available in the market today. They can also be used to measure the parameters needed in the IOL calculation using the latest generation formulas, such as the Barett Universal II. Therefore, this study aims to compare the accuracy of refraction results between Pentacam AXL compared to IOL Master 700 after cataract surgery with the Barett Universal-II formula. Method: A total of 64 eyes from 64 patients who had a preoperative examination with IOL Master 700 and Pentacam AXL were included in this study. Parameters such as K, ACD, LT, WTW, and AL were then compared between the two tools. Prediction error values were also calculated and compared based on the difference between the Spherical equivalent (SE) of subjective refraction results after 4 weeks of surgery with their refractive prediction targets. Results: There was no statistically significant difference in the parameters measured from the two tools except ACD and WTW. Furthermore, LT was difficult to obtain on the Pentacam AXL due to penetration problems, as well as in patients with significant lens opacities. The percentage of error prediction values that reach ± 0.50 D on Pentacam AXL and IOL Master 700 was 70.3% and 73.5%, respectively. However, the average prediction error that was close to emmetropia with IOL Master 700 was greater compared to the other tool. Conclusion: Pentacam AXL has a fairly good accuracy for refraction prediction compared to IOL Master 700. However, it is still necessary to optimize its constants to obtain optimal results.展开更多
The multiplication of heavy vehicle axles and road overloads are phenomena that are becoming increasingly important on the road network of the WAEMU community. These phenomena, although framed by standards, have an im...The multiplication of heavy vehicle axles and road overloads are phenomena that are becoming increasingly important on the road network of the WAEMU community. These phenomena, although framed by standards, have an impact on the durability of pavements. In this manuscript it is a question of evaluating the life of the road under the effect of traffic of these multi-axle vehicles and the different tolerances of overloads observed on the road network. To achieve this, a modeling of a bituminous pavement was made with the software ALIZE Lcpc Version 231 based on the principle of the French method of sizing. An inventory of multi-axle heavy goods vehicles was also made on a road with a weighing station. This traffic counting made it possible to classify heavy goods vehicles into three categories, namely: 1) trucks, 2) dual-wheeled semi-trailers and 3) single-wheeled semi-trailers. The results obtained show that in terms of aggressiveness, single-wheeled semi-trailers are the most aggressive, followed by heavy goods vehicles in the category of trucks with more than five axles and semi-trailers with dual wheels with more than seven axles. The durability of the road depends on the aggressiveness of heavy goods vehicles, it was found that the tolerance threshold for overloads of 15% of the total permissible rolling weight (TARW) or the total permissible laden weight (TALW) currently granted in the Community area needs to be reviewed. For durable road surfaces, this tolerance may only be allowed for heavy goods vehicles of type P11, P12 and P13. The 5% tolerance can be applied to all vehicles except heavy goods vehicles with single wheels.展开更多
基金the National Natural Science Foundation of China(Nos.52001310 and 52130002)the National Science and Technology Major Project(No.J2019-VI-0019-0134)+1 种基金KC Wong Education Foundation(No.GJTD-2020-09)Institute of Metal Res earch Innovation Fund(No.2023-ZD01)。
文摘Compared with the conventional Charpy impact test method,the oscillographic impact test can help in the behavioral analysis of materials during the fracture process.In this study,the trade-off relationship between the strength and toughness of a DZ2 axle steel at various tempering temperatures and the cause of the improvement in impact toughness was evaluated.The tempering process dramatically influenced carbide precipitation behavior,which resulted in different aspect ratios of carbides.Impact toughness improved along with the rise in tempering temperature mainly due to the increase in energy required in impact crack propagation.The characteristics of the impact crack propagation process were studied through a comprehensive analysis of stress distribution,oscilloscopic impact statistics,fracture morphology,and carbide morphology.The poor impact toughness of low-tempering-temperature specimens was attributed to the increased number of stress concentration points caused by carbide morphology in the small plastic zone during the propagation process,which resulted in a mixed distribution of brittle and ductile fractures on the fracture surface.
基金supported by the National Natural Science Foundation of China(Grant Nos.62173137,52172403,62303178).
文摘Reasonable distribution of braking force is a factor for a smooth,safe,and comfortable braking of trains.A dynamic optimal allocation strategy of electric-air braking force is proposed in this paper to solve the problem of the lack of consideration of adhesion difference of train wheelsets in the existing high-speed train electric-air braking force optimal allocation strategies.In this method,the braking strategy gives priority to the use of electric braking force.The force model of a single train in the braking process is analyzed to calculate the change of adhesion between the wheel and rail of each wheelset after axle load transfer,and then the adhesion of the train is estimated in real time.Next,with the goal of maximizing the total adhesion utilization ratio of trailer/motor vehicles,a linear programming distribution function is constructed.The proportional coefficient of adhesion utilization ratio of each train and the application upper limit of braking force in the function is updated according to the change time point of wheelset adhesion.Finally,the braking force is dynamically allocated.The simulation results of Matlab/Simulink show that the proposed algorithm not only uses the different adhesion limits of each trailer to reduce the total amount of braking force undertaken by the motor vehicle,but also considers the adhesion difference of each wheelset.The strategy can effectively reduce the risk and time of motor vehicles during the braking process and improve the stability of the train braking.
文摘Bituminous materials are heat-sensitive, and their mechanical properties vary with temperature. This variation in properties is not without consequences on the performance of flexible road structures under the repeated passage of multi-axles. This study determines the influence of seasonal variations on the rate of permanent deformation, the rut depth of flexible pavements and the effect of alternating loading of heavy goods vehicles following the temperature variations on the durability of roads. Thus, an ambient and pavement surface temperature measurement was carried out in 2022. The temperature profile at different layers of the modelled pavement, the evaluation of deformation rates and rutting depth were determined using several models. The results show that the permanent deformation and rutting rates are higher at the level of the bituminous concrete layer than at the level of the asphalt gravel layer because the stresses decrease from the surface to the depth of the pavement. On the other hand, the variations in these rates, permanent deformations and ruts between the hot and so-called cold periods are more pronounced in the bitumen gravel than in bituminous concrete, showing that gravel bitumen is more sensitive to temperature variations than bituminous concrete despite its higher rigidity. Of these results, we suggested a periodic and alternating loading of the different types of heavy goods vehicles. These loads consist of fully applying the WAEMU standards with a tolerance of 15% during periods of high and low temperatures. This regulation has increased 2 to 3 times in the durability of roadways depending on the type of heavy goods vehicle.
基金supported by the National Natural Science Foundation of China(52075032)the Science and Technology Research and Development Program of China State Railway Group Co.,Ltd.(K2022J023).
文摘As a key safety component of the high-speed train, fatigue fracture of the axle would lead to major accidents such as derailment or overturning. The complexity of the axle dynamic stress test seriously enhances the difficulty of axle fatigue damage analysis. In this paper, the dynamic stress test of the high-speed train axle was carried out,the axle box acceleration was monitored on-track during the test, and the relationship between the axle stress spectrum and acceleration was analyzed on-track. The results show that the relationships between the axle equivalent stresses and the Root Mean Square(RMS) values of the axle box vertical acceleration and lateral acceleration exhibit a strong joint probability density distribution. The concept of the virtual surface density of wheel-rail contact is also proposed to realize the purpose of using axle box acceleration to deduce axle equivalent force. The results quantify the relationship between axle box acceleration and axle equivalent force, provide a new method for predicting the axle damage using the acceleration RMS values, and open up a new approach for structural health monitoring of high-speed train axles.
文摘Background: The availability of premium intraocular lenses (IOL), including toric, multifocal, and EDOF, has become very sophisticated and now demands accurate biometric measurement accuracy. The Pentacam AXL and IOL Master 700 are often used for optical biometry and they are available in the market today. They can also be used to measure the parameters needed in the IOL calculation using the latest generation formulas, such as the Barett Universal II. Therefore, this study aims to compare the accuracy of refraction results between Pentacam AXL compared to IOL Master 700 after cataract surgery with the Barett Universal-II formula. Method: A total of 64 eyes from 64 patients who had a preoperative examination with IOL Master 700 and Pentacam AXL were included in this study. Parameters such as K, ACD, LT, WTW, and AL were then compared between the two tools. Prediction error values were also calculated and compared based on the difference between the Spherical equivalent (SE) of subjective refraction results after 4 weeks of surgery with their refractive prediction targets. Results: There was no statistically significant difference in the parameters measured from the two tools except ACD and WTW. Furthermore, LT was difficult to obtain on the Pentacam AXL due to penetration problems, as well as in patients with significant lens opacities. The percentage of error prediction values that reach ± 0.50 D on Pentacam AXL and IOL Master 700 was 70.3% and 73.5%, respectively. However, the average prediction error that was close to emmetropia with IOL Master 700 was greater compared to the other tool. Conclusion: Pentacam AXL has a fairly good accuracy for refraction prediction compared to IOL Master 700. However, it is still necessary to optimize its constants to obtain optimal results.
文摘The multiplication of heavy vehicle axles and road overloads are phenomena that are becoming increasingly important on the road network of the WAEMU community. These phenomena, although framed by standards, have an impact on the durability of pavements. In this manuscript it is a question of evaluating the life of the road under the effect of traffic of these multi-axle vehicles and the different tolerances of overloads observed on the road network. To achieve this, a modeling of a bituminous pavement was made with the software ALIZE Lcpc Version 231 based on the principle of the French method of sizing. An inventory of multi-axle heavy goods vehicles was also made on a road with a weighing station. This traffic counting made it possible to classify heavy goods vehicles into three categories, namely: 1) trucks, 2) dual-wheeled semi-trailers and 3) single-wheeled semi-trailers. The results obtained show that in terms of aggressiveness, single-wheeled semi-trailers are the most aggressive, followed by heavy goods vehicles in the category of trucks with more than five axles and semi-trailers with dual wheels with more than seven axles. The durability of the road depends on the aggressiveness of heavy goods vehicles, it was found that the tolerance threshold for overloads of 15% of the total permissible rolling weight (TARW) or the total permissible laden weight (TALW) currently granted in the Community area needs to be reviewed. For durable road surfaces, this tolerance may only be allowed for heavy goods vehicles of type P11, P12 and P13. The 5% tolerance can be applied to all vehicles except heavy goods vehicles with single wheels.