期刊文献+
共找到499篇文章
< 1 2 25 >
每页显示 20 50 100
Brain-derived neurotrophic factor signaling in the neuromuscular junction during developmental axonal competition and synapse elimination
1
作者 Josep Tomàs Víctor Cilleros-Mañé +7 位作者 Laia Just-Borràs Marta Balanyà-Segura Aleksandra Polishchuk Laura Nadal Marta Tomàs Carolina Silvera-Simón Manel M.Santafé Maria A.Lanuza 《Neural Regeneration Research》 SCIE CAS 2025年第2期394-401,共8页
During the development of the nervous system,there is an overproduction of neurons and synapses.Hebbian competition between neighboring nerve endings and synapses performing different activity levels leads to their el... During the development of the nervous system,there is an overproduction of neurons and synapses.Hebbian competition between neighboring nerve endings and synapses performing different activity levels leads to their elimination or strengthening.We have extensively studied the involvement of the brain-derived neurotrophic factor-Tropomyosin-related kinase B receptor neurotrophic retrograde pathway,at the neuromuscular junction,in the axonal development and synapse elimination process versus the synapse consolidation.The purpose of this review is to describe the neurotrophic influence on developmental synapse elimination,in relation to other molecular pathways that we and others have found to regulate this process.In particular,we summarize our published results based on transmitter release analysis and axonal counts to show the different involvement of the presynaptic acetylcholine muscarinic autoreceptors,coupled to downstream serine-threonine protein kinases A and C(PKA and PKC)and voltage-gated calcium channels,at different nerve endings in developmental competition.The dynamic changes that occur simultaneously in several nerve terminals and synapses converge across a postsynaptic site,influence each other,and require careful studies to individualize the mechanisms of specific endings.We describe an activity-dependent balance(related to the extent of transmitter release)between the presynaptic muscarinic subtypes and the neurotrophin-mediated TrkB/p75NTR pathways that can influence the timing and fate of the competitive interactions between the different axon terminals.The downstream displacement of the PKA/PKC activity ratio to lower values,both in competing nerve terminals and at postsynaptic sites,plays a relevant role in controlling the elimination of supernumerary synapses.Finally,calcium entry through L-and P/Q-subtypes of voltage-gated calcium channels(both channels are present,together with the N-type channel in developing nerve terminals)contributes to reduce transmitter release and promote withdrawal of the most unfavorable nerve terminals during elimination(the weakest in acetylcholine release and those that have already become silent).The main findings contribute to a better understanding of punishment-rewarding interactions between nerve endings during development.Identifying the molecular targets and signaling pathways that allow synapse consolidation or withdrawal of synapses in different situations is important for potential therapies in neurodegenerative diseases. 展开更多
关键词 acetylcholine release adenosine receptors axonal competition brain-derived neurotrophic factor calcium channels motor end-plate muscarinic acetylcholine receptors postnatal synapse elimination serine kinases tropomyosin-related kinase receptorB
下载PDF
A lead role for a“secondary”axonal injury response
2
作者 Melissa A.Rudy Trent A.Watkins 《Neural Regeneration Research》 SCIE CAS 2025年第2期469-470,共2页
Stress signaling following axon injury stimulates a transcriptional program for regeneration that might be exploited to promote central nervous system repair.However,this stress response drives neuronal apoptosis in n... Stress signaling following axon injury stimulates a transcriptional program for regeneration that might be exploited to promote central nervous system repair.However,this stress response drives neuronal apoptosis in non-regenerative environments.This duality presents a quandary for the development of therapeutic interventions:manipulating stress signaling to enhance recovery of damaged neurons risks accelerating neurodegeneration or restricting regenerative potential.This dichotomy is well illustrated by the fates of retinal ganglion cells(RGCs)following optic nerve crush.In this central nervous system injury model,disruption of a stress-activated MAP kinase(MAPK)cascade blocks the extensive apoptosis of RGCs that occurs in wild-type mice(Watkins et al.,2013;Welsbie et al.,2017). 展开更多
关键词 INJURY axonal STRESS
下载PDF
Axonal remodeling of the corticospinal tract during neurological recovery after stroke 被引量:10
3
作者 Zhongwu Liu Hongqi Xin Michael Chopp 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第5期939-943,共5页
Stroke remains the leading cause of long-term disability.Hemiparesis is one of the most common post-stroke motor deficits and is largely attributed to loss or disruption of the motor signals from the affected motor co... Stroke remains the leading cause of long-term disability.Hemiparesis is one of the most common post-stroke motor deficits and is largely attributed to loss or disruption of the motor signals from the affected motor cortex.As the only direct descending motor pathway,the corticospinal tract(CST)is the primary pathway to innervate spinal motor neurons,and thus,forms the neuroanatomical basis to control the peripheral muscles for voluntary movements.Here,we review evidence from both experimental animals and stroke patients,regarding CST axonal damage,functional contribution of CST axonal integrity and remodeling to neurological recovery,and therapeutic approaches aimed to enhance CST axonal remodeling after stroke.The new insights gleaned from preclinical and clinical studies may encourage the development of more rational therapeutics with a strategy targeted to promote axonal rewiring for corticospinal innervation,which will significantly impact the current clinical needs of subacute and chronic stroke treatment. 展开更多
关键词 axonal degeneration axonal integrity axonal remodeling corticospinal tract motor performance neurological recovery STROKE therapeutic strategy
下载PDF
Collapsin response mediator protein-2 plays a major protective role in acute axonal degeneration 被引量:5
4
作者 Jian-Nan Zhang Jan C.Koch 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第5期692-695,共4页
Axonal degeneration is a key pathological feature in many neurological diseases. It often leads to persistent deficits due to the inability of axons to regenerate in the central nervous system. Therefore therapeutic a... Axonal degeneration is a key pathological feature in many neurological diseases. It often leads to persistent deficits due to the inability of axons to regenerate in the central nervous system. Therefore therapeutic approaches should optimally both attenuate axonal degeneration and foster axonal regeneration. Compelling evidence suggests that collapsin response mediator protein-2(CRMP2) might be a molecular target fulfilling these requirements. In this mini-review, we give a compact overview of the known functions of CRMP2 and its molecular interactors in neurite outgrowth and in neurodegenerative conditions. Moreover, we discuss in detail our recent findings on the role of CRMP2 in acute axonal degeneration in the optic nerve. We found that the calcium influx induced by the lesion activates the protease calpain which cleaves CRMP2, leading to impairment of axonal transport. Both calpain inhibition and CRMP2 overexpression effectively protected the proximal axons against acute axonal degeneration. Taken together, CRMP2 is further characterized as a central molecular player in acute axonal degeneration and thus evolves as a promising therapeutic target to both counteract axonal degeneration and foster axonal regeneration in neurodegenerative and neurotraumatic diseases. 展开更多
关键词 collapsin response mediator protein-2 CRMP2 axonal regeneration optic nerve cruch axonaldegeneration CALPAIN axonal transport
下载PDF
Ca^(2+)-induced myelin pathology precedes axonal spheroid formation and is mediated in part by store-operated Ca^(2+)entry after spinal cord injury
5
作者 Spencer Ames Kia Adams +1 位作者 Mariah E.Geisen David P.Stirling 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第12期2720-2726,共7页
The formation of axonal spheroid is a common feature following spinal cord injury.To further understand the source of Ca^(2+)that mediates axonal spheroid formation,we used our previously characterized ex vivo mouse s... The formation of axonal spheroid is a common feature following spinal cord injury.To further understand the source of Ca^(2+)that mediates axonal spheroid formation,we used our previously characterized ex vivo mouse spinal cord model that allows precise perturbation of extracellular Ca^(2+).We performed twophoton excitation imaging of spinal cords isolated from Thy1YFP+transgenic mice and applied the lipophilic dye,Nile red,to record dynamic changes in dorsal column axons and their myelin sheaths respectively.We selectively released Ca^(2+)from internal stores using the Ca^(2+)ionophore ionomycin in the presence or absence of external Ca^(2+).We reported that ionomycin dose-dependently induces pathological changes in myelin and pronounced axonal spheroid formation in the presence of normal 2 m M Ca^(2+)artificial cerebrospinal fluid.In contrast,removal of external Ca^(2+)significantly decreased ionomycin-induced myelin and axonal spheroid formation at 2 hours but not at 1 hour after treatment.Using mice that express a neuron-specific Ca^(2+)indicator in spinal cord axons,we confirmed that ionomycin induced significant increases in intra-axonal Ca^(2+),but not in the absence of external Ca^(2+).Periaxonal swelling and the resultant disruption in the axo-myelinic interface often precedes and is negatively correlated with axonal spheroid formation.Pretreatment with YM58483(500 n M),a well-established blocker of store-operated Ca^(2+)entry,significantly decreased myelin injury and axonal spheroid formation.Collectively,these data reveal that ionomycin-induced depletion of internal Ca^(2+)stores and subsequent external Ca^(2+)entry through store-operated Ca^(2+)entry contributes to pathological changes in myelin and axonal spheroid formation,providing new targets to protect central myelinated fibers. 展开更多
关键词 axonal degeneration axonal spheroid formation IONOMYCIN store-operated calcium entry MYELIN Nile red peri-axonal swelling
下载PDF
Axonal Conduction Velocity: A Computer Study
6
作者 Arthur D. Snider Aman Chawla Salvatore D. Morgera 《Journal of Applied Mathematics and Physics》 2024年第1期60-71,共12页
This paper derives rigorous statements concerning the propagation velocity of action potentials in axons. The authors use the Green’s function approach to approximate the action potential and find a relation between ... This paper derives rigorous statements concerning the propagation velocity of action potentials in axons. The authors use the Green’s function approach to approximate the action potential and find a relation between conduction velocity and the impulse profile. Computer simulations are used to bolster the analysis. 展开更多
关键词 NEURON AXON Action Potential Conduction Velocity INTERNODE
下载PDF
Physical understanding of axonal growth patterns on grooved substrates:groove ridge crossing versus longitudinal alignment 被引量:3
7
作者 Deming Zhang Hairui Suo +3 位作者 Jin Qian Jun Yin Jianzhong Fu Yong Huang 《Bio-Design and Manufacturing》 SCIE CSCD 2020年第4期348-360,共13页
Surface topographies such as micrometric edges and grooves have been widely used to improve neuron outgrowth.However,finding the mechanism of neuron–surface interactions on grooved substrates remains a challenge.In t... Surface topographies such as micrometric edges and grooves have been widely used to improve neuron outgrowth.However,finding the mechanism of neuron–surface interactions on grooved substrates remains a challenge.In this work,PC12 cells and chick forebrain neurons(CFNs)were cultured on grooved and smooth polyacrylonitrile substrates.It was found that CFNs showed a tendency of growing across groove ridges;while PC12 cells were only observed to grow in the longitudinal direction of grooves.To further investigate these observations,a 3D physical model of axonal outgrowth was developed.In this model,axon shafts are simulated as elastic 3D beams,accounting for the axon outgrowth as well as the focal contacts between axons and substrates.Moreover,the bending direction of axon tips during groove ridge crossing is governed by the energy minimization principle.Our physical model predicts that axonal groove ridge crossing is contributed by the bending compliance of axons,caused by lower Young’s modulus and smaller diameters.This work will aid the understanding of the mechanisms involved in axonal alignment and elongation of neurons guided by grooved substrates,and the obtained insights can be used to enhance the design of instructive scaffolds for nerve tissue engineering and regeneration applications. 展开更多
关键词 Grooved substrates Neuron outgrowth axonal outgrowth model axonal crossing
下载PDF
Fidgetin interacting with microtubule end binding protein EB3 affects axonal regrowth in spinal cord injury 被引量:1
8
作者 Chao Ma Junpei Wang +8 位作者 Qifeng Tu Weijuan Bo Zunlu Hu Run Zhuo Ronghua Wu Zhangji Dong Liang Qiang Yan Liu Mei Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第12期2727-2732,共6页
Fidgetin,a microtubule-severing enzyme,regulates neurite outgrowth,axonal regeneration,and cell migration by trimming off the labile domain of microtubule polymers.Because maintenance of the microtubule labile domain ... Fidgetin,a microtubule-severing enzyme,regulates neurite outgrowth,axonal regeneration,and cell migration by trimming off the labile domain of microtubule polymers.Because maintenance of the microtubule labile domain is essential for axon initiation,elongation,and navigation,it is of interest to determine whether augmenting the microtubule labile domain via depletion of fidgetin serves as a therapeutic approach to promote axonal regrowth in spinal cord injury.In this study,we constructed rat models of spinal cord injury and sciatic nerve injury.Compared with spinal cord injury,we found that expression level of tyrosinated microtubules in the labile portion of microtubules continuously increased,whereas fidgetin decreased after peripheral nerve injury.Depletion of fidgetin enhanced axon regeneration after spinal cord injury,whereas expression level of end binding protein 3(EB3)markedly increased.Next,we performed RNA interference to knockdown EB3 or fidgetin.We found that deletion of EB3 did not change fidgetin expression.Conversely,deletion of fidgetin markedly increased expression of tyrosinated microtubules and EB3.Deletion of fidgetin increased the amount of EB3 at the end of neurites and thereby increased the level of tyrosinated microtubules.Finally,we deleted EB3 and overexpressed fidgetin.We found that fidgetin trimmed tyrosinated tubulins by interacting with EB3.When fidgetin was deleted,the labile portion of microtubules was elongated,and as a result the length of axons and number of axon branches were increased.These findings suggest that fidgetin can be used as a novel therapeutic target to promote axonal regeneration after spinal cord injury.Furthermore,they reveal an innovative mechanism by which fidgetin preferentially severs labile microtubules. 展开更多
关键词 acetylated microtubules axon regeneration axonal branching axonal regrowth end binding protein 3 fidgetin microtubule dynamics sciatic nerve injury spinal cord injury tyrosinated microtubules
下载PDF
Polyethylene glycol restores axonal conduction after corpus callosum transection 被引量:1
9
作者 Ravinder Bamba D.Colton Riley +3 位作者 Richard B.Boyer Alonda C.Pollins R.Bruce Shack Wesley P.Thayer 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第5期757-760,共4页
Polyethylene glycol(PEG) has been shown to restore axonal continuity after peripheral nerve transection in animal models. We hypothesized that PEG can also restore axonal continuity in the central nervous system. In... Polyethylene glycol(PEG) has been shown to restore axonal continuity after peripheral nerve transection in animal models. We hypothesized that PEG can also restore axonal continuity in the central nervous system. In this current experiment, coronal sectioning of the brains of Sprague-Dawley rats was performed after animal sacrifice. 3Brain high-resolution microelectrode arrays(MEA) were used to measure mean firing rate(MFR) and peak amplitude across the corpus callosum of the ex-vivo brain slices. The corpus callosum was subsequently transected and repeated measurements were performed. The cut ends of the corpus callosum were still apposite at this time. A PEG solution was applied to the injury site and repeated measurements were performed. MEA measurements showed that PEG was capable of restoring electrophysiology signaling after transection of central nerves. Before injury, the average MFRs at the ipsilateral, midline, and contralateral corpus callosum were 0.76, 0.66, and 0.65 spikes/second, respectively, and the average peak amplitudes were 69.79, 58.68, and 49.60 μV, respectively. After injury, the average MFRs were 0.71, 0.14, and 0.25 spikes/second, respectively and peak amplitudes were 52.11, 8.98, and 16.09 μV, respectively. After application of PEG, there were spikes in MFR and peak amplitude at the injury site and contralaterally. The average MFRs were 0.75, 0.55, and 0.47 spikes/second at the ipsilateral, midline, and contralateral corpus callosum, respectively and peak amplitudes were 59.44, 45.33, 40.02 μV, respectively. There were statistically differences in the average MFRs and peak amplitudes between the midline and non-midline corpus callosum groups(P 〈 0.01, P 〈 0.05). These findings suggest that PEG restores axonal conduction between severed central nerves, potentially representing axonal fusion. 展开更多
关键词 nerve regeneration polyethylene glycol nerve repair axonal fusion central nerve injury axonal conduction corpus callosum neural regeneration
下载PDF
Bridging the gap:axonal fusion drives rapid functional recovery of the nervous system
10
作者 Jean-Sébastien Teoh Michelle Yu-Ying Wong +1 位作者 Tarika Vijayaraghavan Brent Neumann 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第4期591-594,共4页
Injuries to the central or peripheral nervous system frequently cause long-term disabilities because damaged neurons are unable to efficiently self-repair.This inherent deficiency necessitates the need for new treatme... Injuries to the central or peripheral nervous system frequently cause long-term disabilities because damaged neurons are unable to efficiently self-repair.This inherent deficiency necessitates the need for new treatment options aimed at restoring lost function to patients.Compared to humans,a number of species possess far greater regenerative capabilities,and can therefore provide important insights into how our own nervous systems can be repaired.In particular,several invertebrate species have been shown to rapidly initiate regeneration post-injury,allowing separated axon segments to re-join.This process,known as axonal fusion,represents a highly efficient repair mechanism as a regrowing axon needs to only bridge the site of damage and fuse with its separated counterpart in order to re-establish its original structure.Our recent findings in the nematode Caenorhabditis elegans have expanded the promise of axonal fusion by demonstrating that it can restore complete function to damaged neurons.Moreover,we revealed the importance of injury-induced changes in the composition of the axonal membrane for mediating axonal fusion,and discovered that the level of axonal fusion can be enhanced by promoting a neuron's intrinsic growth potential.A complete understanding of the molecular mechanisms controlling axonal fusion may permit similar approaches to be applied in a clinical setting. 展开更多
关键词 axonal fusion axon regeneration nervous system repair nerve injury PHOSPHATIDYLSERINE functional repair axonal transport Caenorhabditis elegans
下载PDF
The role of microtubule-associated protein 1B in axonal growth and neuronal migration in the central nervous system
11
作者 Maoguang Yang Minfei Wu +7 位作者 Peng Xia Chunxin Wang Peng Yan Qi Gao Jian Liu Haitao Wang Xingwei Duan Xiaoyu Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第11期842-848,共7页
In this review, we discuss the role of microtubule-associated protein 1 B (MAP1B) and its phosphorylation in axonal development and regeneration in the central nervous system. MAP1B exhibits similar functions during... In this review, we discuss the role of microtubule-associated protein 1 B (MAP1B) and its phosphorylation in axonal development and regeneration in the central nervous system. MAP1B exhibits similar functions during axonal development and regeneration. MAP1B and phosphorylated MAPIB in neurons and axons maintain a dynamic balance between cytoskeletal components, and regulate the stability and interaction of microtubules and actin to promote axonal growth, neural connectivity and regeneration in the central nervous system. 展开更多
关键词 microtubule-associated protein 1 B central nervous system axonal regeneration axonal develooment axon auidance neuronal migration
下载PDF
Diffuse axonal injury after traumatic cerebral microbleeds: an evaluation of imaging techniques 被引量:21
12
作者 Jun Liu Zhifeng Kou Yongquan Tian 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第12期1222-1230,共9页
Previous neuropathological studies regarding traumatic brain injury have primarily focused on changes in large structures, for example, the clinical prognosis after cerebral contusion, intrace- rebral hematoma, and ep... Previous neuropathological studies regarding traumatic brain injury have primarily focused on changes in large structures, for example, the clinical prognosis after cerebral contusion, intrace- rebral hematoma, and epidural and subdural hematoma. In fact, many smaller injuries can also lead to severe neurological disorders. For example, cerebral microbleeds result in the dysfunc- tion of adjacent neurons and the disassociation between cortex and subcortical structures. These tiny changes cannot be adequately visualized on CT or conventional MRI. In contrast, gradient echo sequence-based susceptibility-weighted imaging is very sensitive to blood metabolites and microbleeds, and can be used to evaluate traumatic cerebral microbleeds with high sensitivity and accuracy. Cerebral microbleed can be considered as an important imaging marker for dif- fuse axonal injury with potential relevance for prognosis. For this reason, based on experimental and clinical studies, this study reviews the role of imaging data showing traumatic cerebral microbleeds in the evaluation of cerebral neuronal injury and neurofunctional loss. 展开更多
关键词 nerve regeneration NEUROIMAGING traumatic brain injury cerebral microbleeds diffuse axonal injury gradient-recalled-echo susceptibility weighted imaging REVIEW neural regeneration
下载PDF
Bone marrow mesenchymal stem cells repair spinal cord ischemia/reperfusion injury by promoting axonal growth and anti-autophagy 被引量:16
13
作者 Fei Yin Chunyang Meng +5 位作者 Rifeng Lu Lei Li Ying Zhang Hao Chen Yonggang Qin Li Guo 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第18期1665-1671,共7页
Bone marrow mesenchymal stem cells can differentiate into neurons and astrocytes after trans- plantation in the spinal cord of rats with ischemia/reperfusion injury. Although bone marrow mesenchymal stem cells are kno... Bone marrow mesenchymal stem cells can differentiate into neurons and astrocytes after trans- plantation in the spinal cord of rats with ischemia/reperfusion injury. Although bone marrow mesenchymal stem cells are known to protect against spinal cord ischemia/reperfusion injury through anti-apoptotic effects, the precise mechanisms remain unclear. In the present study, bone marrow mesenchymal stem cells were cultured and proliferated, then transplanted into rats with ischemia/reperfusion injury via retro-orbital injection. Immunohistochemistry and immunofluorescence with subsequent quantification revealed that the expression of the axonal regeneration marker, growth associated protein-43, and the neuronal marker, microtubule-as- sociated protein 2, significantly increased in rats with bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Fur- thermore, the expression of the autophagy marker, microtubule-associated protein light chain 3B, and Beclin 1, was significantly reduced in rats with the bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Western blot analysis showed that the expression of growth associated protein-43 and neuro- filament-H increased but light chain 3B and Beclin 1 decreased in rats with the bone marrow mesenchymal stem cell transplantation. Our results therefore suggest that bone marrow mes- enchymal stem cell transplantation promotes neurite growth and regeneration and prevents autophagy. These responses may likely be mechanisms underlying the protective effect of bone marrow mesenchymal stem cells against spinal cord ischemia/reperfusion injury. 展开更多
关键词 nerve regeneration bone marrow mesenchymal stem cells spinal cord ischemia/reperfusioninjury axonal growth AUTOPHAGY REPAIR NSFC grant neural regeneration
下载PDF
A growing field: the regulation of axonal regeneration by Wnt signaling 被引量:12
14
作者 Armando L. Garcia Adanna Udeh +1 位作者 Karthik Kalahasty Abigail S. Hackam 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第1期43-52,共10页
The canonical Wnt/β-catenin pathway is a highly conserved signaling cascade that plays critical roles during embryogenesis. Wnt ligands regulate axonal extension, growth cone guidance and synaptogenesis throughout th... The canonical Wnt/β-catenin pathway is a highly conserved signaling cascade that plays critical roles during embryogenesis. Wnt ligands regulate axonal extension, growth cone guidance and synaptogenesis throughout the developing central nervous system (CNS). Recently, studies in mammalian and fish model systems have demonstrated that Wnt/β-catenin signaling also promotes axonal regeneration in the adult optic nerve and spinal cord after injury, raising the possibility that Wnt could be developed as a therapeutic strategy. In this review, we summarize experimental evidence that reveals novel roles for Wnt signaling in the injured CNS, and discuss possible mechanisms by which Wnt ligands could overcome molecular barriers inhibiting axonal growth to promote regeneration. A central challenge in the neuroscience field is developing therapeutic strategies that induce robust axonal regeneration. Although adult axons have the capacity to respond to axonal guidance molecules after injury, there are several major obstacles for axonal growth, including extensive neuronal death, glial scars at the injury site, and lack of axonal guidance signals. Research in rodents demonstrated that activation of Wnt/β-catenin signaling in retinal neurons and radial glia induced neuronal survival and axonal growth, but that activation within reactive glia at the injury site promoted proliferation and glial scar formation. Studies in zebrafish spinal cord injury models confirm an axonal regenerative role for Wnt/β-catenin signaling and identified the cell types responsible. Additionally, in vitro and in vivo studies demonstrated that Wnt induces axonal and neurite growth through transcription-dependent effects of its central mediator β-catenin, potentially by inducing regeneration-promoting genes. Canonical Wnt signaling may also function through transcription-independent interactions of β-catenin with cytoskeletal elements, which could stabilize growing axons and control growth cone movement. Therefore, these studies suggest that Wnt-induced pathways responsible for regulating axonal growth during embryogenesis could be repurposed to promote axonal growth after injury. 展开更多
关键词 Wnt signaling NEURITOGENESIS RETINA retinal ganglion cell axonal growth REGENERATION spinal cord
下载PDF
Inhibiting endogenous tissue plasminogen activator enhanced neuronal apoptosis and axonal injury after traumatic brain injury 被引量:10
15
作者 Jun-Jie Zhao Zun-Wei Liu +4 位作者 Bo Wang Ting-Qin Huang Dan Guo Yong-Lin Zhao Jin-Ning Song 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第4期667-675,共9页
Tissue plasminogen activator is usually used for the treatment of acute ischemic stroke,but the role of endogenous tissue plasminogen activator in traumatic brain injury has been rarely reported.A rat model of traumat... Tissue plasminogen activator is usually used for the treatment of acute ischemic stroke,but the role of endogenous tissue plasminogen activator in traumatic brain injury has been rarely reported.A rat model of traumatic brain injury was established by weight-drop method.The tissue plasminogen activator inhibitor neuroserpin(5μL,0.25 mg/mL)was injected into the lateral ventricle.Neurological function was assessed by neurological severity score.Neuronal and axonal injuries were assessed by hematoxylin-eosin staining and Bielschowsky silver staining.Protein level of endogenous tissue plasminogen activator was analyzed by western blot assay.Apoptotic marker cleaved caspase-3,neuronal marker neurofilament light chain,astrocyte marker glial fibrillary acidic protein and microglial marker Iba-1 were analyzed by immunohistochemical staining.Apoptotic cell types were detected by immunofluorescence double labeling.Apoptotic cells in the damaged cortex were detected by terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP-biotin nick-end labeling staining.Degenerating neurons in the damaged cortex were detected by Fluoro-Jade B staining.Expression of tissue plasminogen activator was increased at 6 hours,and peaked at 3 days after traumatic brain injury.Neuronal apoptosis and axonal injury were detected after traumatic brain injury.Moreover,neuroserpin enhanced neuronal apoptosis,neuronal injury and axonal injury,and activated microglia and astrocytes.Neuroserpin further deteriorated neurobehavioral function in rats with traumatic brain injury.Our findings confirm that inhibition of endogenous tissue plasminogen activator aggravates neuronal apoptosis and axonal injury after traumatic brain injury,and activates microglia and astrocytes.This study was approved by the Biomedical Ethics Committee of Animal Experiments of Shaanxi Province of China in June 2015. 展开更多
关键词 apoptosis ASTROCYTES axonal INJURY inflammation microglia nerve REGENERATION neural REGENERATION neuronal INJURY neurons NEUROSERPIN tissue PLASMINOGEN activator traumatic brain INJURY
下载PDF
The role of the Rho/ROCK signaling pathway in inhibiting axonal regeneration in the central nervous system 被引量:11
16
作者 Jing Liu Hong-yan Gao Xiao-feng Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第11期1892-1896,共5页
The Rho/Rho-associated coiled-coil containing protein kinase(Rho/ROCK) pathway is a major signaling pathway in the central nervous system, transducing inhibitory signals to block regeneration. After central nervous ... The Rho/Rho-associated coiled-coil containing protein kinase(Rho/ROCK) pathway is a major signaling pathway in the central nervous system, transducing inhibitory signals to block regeneration. After central nervous system damage, the main cause of impaired regeneration is the presence of factors that strongly inhibit regeneration in the surrounding microenvironment. These factors signal through the Rho/ROCK signaling pathway to inhibit regeneration. Therefore, a thorough understanding of the Rho/ROCK signaling pathway is crucial for advancing studies on regeneration and repair of the injured central nervous system. 展开更多
关键词 nerve regeneration Rho/Rho-associated coiled-coil containing protein kinase SIGNALINGPATHWAY axonal regeneration central nervous system microenvironment REVIEWS NSFC grant neural regeneration
下载PDF
Neurofilament proteins in axonal regeneration and neurodegenerative diseases 被引量:8
17
作者 Haitao Wang Minfei Wu +4 位作者 Chuanjun Zhan Enyuan Ma Maoguang Yang Xiaoyu Yang Yingpu Li 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第8期620-626,共7页
Neurofilament protein is a component of the mature neuronal cytoskeleton, and it interacts with the zygosome, which is mediated by neurofilament-related proteins. Neurofilament protein regulates enzyme function and th... Neurofilament protein is a component of the mature neuronal cytoskeleton, and it interacts with the zygosome, which is mediated by neurofilament-related proteins. Neurofilament protein regulates enzyme function and the structure of linker proteins. In addition, neurofilament gene expression plays an important role in nervous system development. Previous studies have shown that neurofilament gene transcriptional regulation is crucial for neurofilament protein expression, especially in axonal regeneration and degenerative diseases. Post-transcriptional regulation increased neurofilament protein gene transcription during axonal regeneration, ultimately resulting in a pattern of neurofilament protein expression. An expression imbalance of post-transcriptional regulatory proteins and other disorders could lead to amyotrophic lateral sclerosis or other neurodegenerative diseases. These findings indicated that after transcription, neurofilament protein regulated expression of related proteins and promoted regeneration of damaged axons, suggesting that regulation disorders could lead to neurodegenerative diseases. 展开更多
关键词 axonal regeneration nerve injury neurodegenerative diseases neurofilament protein post-transcriptional regulation REVIEWS
下载PDF
Mild hypothermia for treatment of diffuse axonal injury: a quantitative analysis of diffusion tensor imaging 被引量:9
18
作者 Guojie Jing Xiaoteng Yao +7 位作者 Yiyi Li Yituan Xie Wang’an Li Kejun Liu Yingchao Jing Baisheng Li Yifan Lv Baoxin Ma 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第2期190-197,共8页
Fractional anisotropy values in diffusion tensor imaging can quantitatively reflect the consistency of nerve fibers after brain damage, where higher values generally indicate less damage to nerve fibers. Therefore, we... Fractional anisotropy values in diffusion tensor imaging can quantitatively reflect the consistency of nerve fibers after brain damage, where higher values generally indicate less damage to nerve fibers. Therefore, we hypothesized that diffusion tensor imaging could be used to evaluate the effect of mild hypothermia on diffuse axona[ injury. A total of 102 patients with diffuse axonal injury were randomly divided into two groups: normothermic and mild hypothermic treatment groups. Patient's modified Rankin scale scores 2 months after mild hypothermia were significant- ly lower than those for the normothermia group. The difference in average fractional anisotropy value for each region of interest before and after mild hypothermia was 1.32-1.36 times higher than the value in the normothermia group. Quantitative assessment of diffusion tensor imaging indicates that mild hypothermia therapy may be beneficial for patients with diffuse axonal injury. 展开更多
关键词 nerve regeneration brain injury mild hypothermia diffuse axonal injury diffusiontensor imaging region of interest fractional anisotropy modified Rankin scale the Natural ScienceFoundation of Guangdong Province in China neural regeneration
下载PDF
Treadmill exercise exerts a synergistic effect with bone marrow mesenchymal stem cell-derived exosomes on neuronal apoptosis and synaptic-axonal remodeling 被引量:6
19
作者 Xin-Hong Jiang Hang-Feng Li +5 位作者 Man-Li Chen Yi-Xian Zhang Hong-Bin Chen Rong-Hua Chen Ying-Chun Xiao Nan Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第6期1293-1299,共7页
Treadmill exercise and mesenchymal stem cell transplantation are both practical and effective methods for the treatment of cerebral ischemia.However,whether there is a synergistic effect between the two remains unclea... Treadmill exercise and mesenchymal stem cell transplantation are both practical and effective methods for the treatment of cerebral ischemia.However,whether there is a synergistic effect between the two remains unclear.In this study,we established rat models of ischemia/reperfusion injury by occlusion of the middle cerebral artery for 2 hours and reperfusion for 24 hours.Rat models were perfused with bone marrow mesenchymal stem cell-derived exosomes(MSC-exos)via the tail vein and underwent 14 successive days of treadmill exercise.Neurological assessment,histopathology,and immunohistochemistry results revealed decreased neuronal apoptosis and cerebral infarct volume,evident synaptic formation and axonal regeneration,and remarkably recovered neurological function in rats subjected to treadmill exercise and MSC-exos treatment.These effects were superior to those in rats subjected to treadmill exercise or MSC-exos treatment alone.Mechanistically,further investigation revealed that the activation of JNK1/c-Jun signaling pathways regulated neuronal apoptosis and synaptic-axonal remodeling.These findings suggest that treadmill exercise may exhibit a synergistic effect with MSC-exos treatment,which may be related to activation of the JNK1/c-Jun signaling pathway.This study provides novel theoretical evidence for the clinical application of treadmill exercise combined with MSC-exos treatment for ischemic cerebrovascular disease. 展开更多
关键词 apoptosis axonal regeneration c-Jun EXOSOMES functional remodeling ischemic stroke JNK1 mesenchymal stem cells synaptic formation treadmill exercise
下载PDF
Prognosis in prolonged coma patients with diffuse axonal injury assessed by somatosensory evoked potential 被引量:5
20
作者 Xiujue Zheng Mantao Chen +1 位作者 Jingqi Li Fei Cao 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第10期948-954,共7页
A total of 43 prolonged coma patients with diffuse axonal injury received the somatosensory evoked potential examination one month after injury in the First Affiliated Hospital, School of Medicine, Zhejiang University... A total of 43 prolonged coma patients with diffuse axonal injury received the somatosensory evoked potential examination one month after injury in the First Affiliated Hospital, School of Medicine, Zhejiang University in China. Somatosensory evoked potentials were graded as normal, abnormal or absent (grades I-III) according to N20 amplitude and central conduction time. The outcome in patients with grade III somatosensory evoked potential was in each case unfavorable. The prognostic accuracy of grade III somatosensory evoked potential for unfavorable and non-awakening outcome was 100% and 80%, respectively. The prognostic accuracy of grade I somatosensory evoked potential for favorable and wakening outcome was 86% and 100%, respectively. These results suggest that somatosensory evoked potential grade is closely correlated with coma severity and degree of recovery. Somatosensory evoked potential is a valuable diagnostic tool to assess prognosis in prolonged coma patients with diffuse axonal injury. 展开更多
关键词 neural regeneration brain injury somatosensory evoked potential diffuse axonal injury COMA PROGNOSIS AWAKENING nerve electrophysiology grants-supported paper NEUROREGENERATION
下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部