Dynamic model for dehydration process of industrial purified terephthalic acid solvent is investigated to understand and characterize the process.A temperature differential expression is presented,which ensures the eq...Dynamic model for dehydration process of industrial purified terephthalic acid solvent is investigated to understand and characterize the process.A temperature differential expression is presented,which ensures the equation to convergence and short computation time.The model is used to study the dynamic behavior of an azeotropic distillation column separating acetic acid and water using n-butyl acetate as the entrainer.Responses of the column to feed flow and aqueous reflux flow are simulated.The movement of temperature front is also simulated.The comparison between simulation and industrial values shows that the model and algorithm are effective.On the basis of simulation and analysis,control strategy,online optimization and so on can be implemented effectively in dehydration process of purified terephthalic acid solvent.展开更多
Necessary and sufficient conditions for azeotropy in reactive mixtures are derived in terms of elemental composition, which shows that in the space of elemental compositions, they take the same functional form as the ...Necessary and sufficient conditions for azeotropy in reactive mixtures are derived in terms of elemental composition, which shows that in the space of elemental compositions, they take the same functional form as the conditions for azeotropy in non-reactive mixtures. The production of methyl tert-butyl ether (MTBE) is taken as an example. It is found that there are a 'pseudo' intermediate-boiling ternary reactive azeotrope at p = 101.325kPa and two 'real' ternary reactive azeotropes at p = 101.325 Pa. The introduced elemental compositions also reduce the dimensionality of the phase diagrams and provide a natural set of variables for visualization of phase behavior.展开更多
基金Supported by the National Natural Science Foundation of China(61072127) the Outstanding Young Innovative Personnel Project of Guangdong Colleges(LYM08098)
文摘Dynamic model for dehydration process of industrial purified terephthalic acid solvent is investigated to understand and characterize the process.A temperature differential expression is presented,which ensures the equation to convergence and short computation time.The model is used to study the dynamic behavior of an azeotropic distillation column separating acetic acid and water using n-butyl acetate as the entrainer.Responses of the column to feed flow and aqueous reflux flow are simulated.The movement of temperature front is also simulated.The comparison between simulation and industrial values shows that the model and algorithm are effective.On the basis of simulation and analysis,control strategy,online optimization and so on can be implemented effectively in dehydration process of purified terephthalic acid solvent.
基金Supported by the National Natural Science Foundation of China (No.29976035) and Zhejiang and Fujian Provincial Natural Science Foundation of China.
文摘Necessary and sufficient conditions for azeotropy in reactive mixtures are derived in terms of elemental composition, which shows that in the space of elemental compositions, they take the same functional form as the conditions for azeotropy in non-reactive mixtures. The production of methyl tert-butyl ether (MTBE) is taken as an example. It is found that there are a 'pseudo' intermediate-boiling ternary reactive azeotrope at p = 101.325kPa and two 'real' ternary reactive azeotropes at p = 101.325 Pa. The introduced elemental compositions also reduce the dimensionality of the phase diagrams and provide a natural set of variables for visualization of phase behavior.