The high-pressure structure and elastic properties of calcium azide(Ca(N_(3))_(2))were investigated using in-situ highpressure x-ray diffraction and Raman scattering up to 54 GPa and 19 GPa,respectively.The compressib...The high-pressure structure and elastic properties of calcium azide(Ca(N_(3))_(2))were investigated using in-situ highpressure x-ray diffraction and Raman scattering up to 54 GPa and 19 GPa,respectively.The compressibility of Ca(N_(3))_(2)changed as the pressure increased,and no phase transition occurred within the pressure from ambient pressure up to 54 GPa.The measured zero-pressure bulk modulus of Ca(N_(3))_(2)is higher than that of other alkali metal azides,due to differences in the ionic character of their metal-azide bonds.Using CASTEP,all vibration modes of Ca(N_(3))_(2)were accurately identified in the vibrational spectrum at ambient pressure.In the high-pressure vibration study,several external modes(ext.)and internal bending modes(ν_(2))of azide anions(N_(3)^(-))softened up to~7 GPa and then hardened beyond that pressure.This evidence is consistent with the variation observed in the F_(E)–f_(E)data analyzed from the XRD result,where the slope of the curve changes at 7.1 GPa.The main behaviors under pressure are the alternating compression,rotation,and bending of N_(3)^(-)ions.The bending behavior makes the structure of Ca(N_(3))_(2)more stable under pressure.展开更多
Copper-based azide(Cu(N_(3))2 or CuN_(3),CA)chips synthesized by in-situ azide reaction and utilized in miniaturized explosive systems has become a hot research topic in recent years.However,the advantages of in-situ ...Copper-based azide(Cu(N_(3))2 or CuN_(3),CA)chips synthesized by in-situ azide reaction and utilized in miniaturized explosive systems has become a hot research topic in recent years.However,the advantages of in-situ synthesis method,including small size and low dosage,bring about difficulties in quantitative analysis and differences in ignition capabilities of CA chips.The aim of present work is to develop a simplified quantitative analysis method for accurate and safe analysis of components in CA chips to evaluate and investigate the corresponding ignition ability.In this work,Cu(N_(3))2 and CuN_(3)components in CA chips were separated through dissolution and distillation by utilizing the difference in solubility and corresponding content was obtained by measuring N_(3)-concentration through spectrophotometry.The spectrophotometry method was optimized by studying influencing factors and the recovery rate of different separation methods was studied,ensuring the accuracy and reproducibility of test results.The optimized method is linear in range from 1.0-25.0 mg/L,with a correlation coefficient R^(2)=0.9998,which meets the requirements of CA chips with a milligram-level content test.Compared with the existing ICP method,component analysis results of CA chips obtained by spectrophotometry are closer to real component content in samples and have satisfactory accuracy.Moreover,as its application in miniaturized explosive systems,the ignition ability of CA chips with different component contents for direct ink writing CL-20 and the corresponding mechanism was studied.This study provided a basis and idea for the design and performance evaluation of CA chips in miniaturized explosive systems.展开更多
In the pursuit of advancing imidazolium-based energetic ionic liquids (EILs),the current study is devoted to the synthesis and characterization of 1,3-dibutyl-imidazolium azide ([BBIm][N_(3)]),as a novel member in thi...In the pursuit of advancing imidazolium-based energetic ionic liquids (EILs),the current study is devoted to the synthesis and characterization of 1,3-dibutyl-imidazolium azide ([BBIm][N_(3)]),as a novel member in this ionic liquids class.The chemical structure of this EIL was rigorously characterized and confirmed using FTIR spectroscopy,1D,and 2D-NMR analyses.The thermal behavior assessment was conducted through DSC and TGA experiments.DSC analysis revealed an endothermic glass transition at T_(g)=-61℃,followed by an exothermic degradation event at T_(onset)=311℃.Similarly,TGA thermograms exhibited a one-stage decomposition process resulting in 100% mass loss of the sample.Furthermore,the short-term thermal stability of the azide EIL was investigated by combining the non-isothermal TGA data with the TAS,it-KAS,and VYA/CE isoconversional kinetic approaches.Consequently,the Arrhenius parameters(E_(a)=154 kJ·mol^(-1),Log(A/s^(-1))=11.8) and the most probable reaction model g(a) were determined.The observed high decomposition temperatures and the significantly elevated activation energy affirm the enhanced thermal stability of the modified EIL.These findings revealed that[BBIm][N_(3)]EIL can be a promising candidate for advanced energetic material application.展开更多
Aluminum(Al) particles are good fuel additives to improve the energy output performances of explosives. Under detonation environment, reaction delay of Al particles plays a key role in the energy release efficiency. U...Aluminum(Al) particles are good fuel additives to improve the energy output performances of explosives. Under detonation environment, reaction delay of Al particles plays a key role in the energy release efficiency. Up to date, reaction delay of Al particles is still limited by the efficiency of mass and heat transfer from oxidizers to Al particles. To address this issue, a homogeneous fuel-oxidizer assembly has recently become a promising strategy. In this work, oxidizer-activated Al fuel particles(ALG) were prepared with glycidyl azide polymer(GAP) as the oxidizer. The ALG was in uniform spherical shape and core-shell structure with shell layer of around 5 nm which was observed by scanning electron microscope and transmission electron microscope. The localized nanoscale mid-IR measurement detected the uniform distribution of characteristic absorption bond of GAP in the shell layer which confirmed the homogenous fuel-oxidizer structure of ALG. A thermal gravimetric analysis of ALG at ultrafast heating rate of 1000℃/min under argon atmosphere was conducted. The decomposition of GAP finished much earlier than that of GAP at heating rate of 10℃/min. Under ultrafast high laser fluence, the reaction response of ALG was characterized and compared with that of micro-sized Al(μAl). With the increase of laser energy, the propagation distance of the shock wave increased. However, the velocity histories were nearly the same when energies were lower than 299 mJ or higher than 706 mJ. The propagation distance of the shock wave for ALG was 0.5 mm larger than that for μAl at 2.1 μs. The underwater explosion showed the peak pressure and the shock wave energy of the ALG-based explosive were both higher than those of the μAl-based explosive at 2.5 m. This study shows the feasibility to improve the energy release of Al-based explosives via using the oxidizer-activated Al fuel particles with energetic polymer as the oxidizer.展开更多
Copper azide(CA), as a primary explosive with high energy density, has not been practically used so far because of its high electrostatic sensitivity. The Cu2O@HKUST-1 core-shell structure hybrid material was synthesi...Copper azide(CA), as a primary explosive with high energy density, has not been practically used so far because of its high electrostatic sensitivity. The Cu2O@HKUST-1 core-shell structure hybrid material was synthesized by the “bottle around ship” methodology in this research by regulating the dissolution rate of Cu2O and the generation rate of metal-organic framework(MOF) materials. Cu2O@HKUST-1 was carbonized to form a Cu O@porous carbon(CuO@PC) composite material. CuO@PC was synthesized into a copper azide(CA) @PC composite energetic material through a gas-solid phase in-situ azidation reaction.CA is encapsulated in PC framework, which acts as a nanoscale Faraday cage, and its excellent electrical conductivity prevents electrostatic charges from accumulating on the energetic material’s surface. The CA@PC composite energetic material has a CA content of 89.6%, and its electrostatic safety is nearly 30times that of pure CA(1.47 mJ compared to 0.05 mJ). CA@PC delivers an outstanding balance of safety and energy density compared to similar materials.展开更多
Due to its extremely low electrostatic sensitivity,copper azide primary explosive is greatly limited in practical applications.In this study,a composite film with Cu-MOF in-situ growth on carbon nanofilm was prepared ...Due to its extremely low electrostatic sensitivity,copper azide primary explosive is greatly limited in practical applications.In this study,a composite film with Cu-MOF in-situ growth on carbon nanofilm was prepared by electrospinning and solvothermal methods,and CNF@Cu-N3film with electrostatic safety was obtained by carbonization and azide later.Its electrostatic sensitivity(E50)was greatly increased from 0.05 mJ of raw materials to 4.06 mJ,and still maintained a good detonation performance which could successfully detonate the CL-20 secondary explosive.This is mainly due to the synergistic effect of the carbon film and the MOF structure,which greatly improves the conductivity of the entire system and the uniform distribution of copper particles,providing a new preparation strategy for metal azide film that is suitable for the micro-initiator device.展开更多
The development trend of miniaturization, chipization, integration, and intelligence of new energetic devices has put forward higher requirements for primary explosives, and the toxicity of lead-containing initiating ...The development trend of miniaturization, chipization, integration, and intelligence of new energetic devices has put forward higher requirements for primary explosives, and the toxicity of lead-containing initiating explosives has also caused increasing concerns. Nano copper azide, due to its green and high-energy characteristics, has attracted increasing interest from researchers in recent years. The research progress of Nano copper azide energetic materials is summarized from the design and preparation of composite energetic materials, and the analysis of sensitivity changes. On this basis, the key points to realize its application prospects are discussed: Develop the preparation method of carbon material modification and the combination of processing and forming to prepare new composite materials to make up for their overly sensitive defects, while giving full play to their advantages of high energy density. By comparing the existing research progress of Nano copper azide, we can understand its performance parameters more systematically, and guide the further application of Nano copper azide. .展开更多
bis(azidomethyl) 3,3′ bis(1,2,4 oxadiazole)(Ⅰ) and bis(azidoacetamino) oxazofurazan(Ⅱ) were synthesized. The structures of these two compounds have been identified by IR, 1H NMR, MS and elemental analy...bis(azidomethyl) 3,3′ bis(1,2,4 oxadiazole)(Ⅰ) and bis(azidoacetamino) oxazofurazan(Ⅱ) were synthesized. The structures of these two compounds have been identified by IR, 1H NMR, MS and elemental analysis. Azido groups were introduced into furazan derivatives and energetic materials of high nitrogen content and high enthalpy of formation can be obtained. The densities of compound Ⅰ and Ⅱ are relatively high. Compound Ⅰ is an azide of lower melting point, it is hopeful to be applied as energetic plastic additives.展开更多
Tazobactam,β lactamase inhibitor, was synthesized from 6 aminopenicillanic acid through eleven steps, including diazotization, bromination, oxidation, chlorization, cyclization, deprotection and so on. The designed...Tazobactam,β lactamase inhibitor, was synthesized from 6 aminopenicillanic acid through eleven steps, including diazotization, bromination, oxidation, chlorization, cyclization, deprotection and so on. The designed route was examined, particularly the azide substitution and cyclization. In the latter reaction, vinyl acetic ester was employed in place of acetylene.展开更多
The photocatalytic activity of cobalt octakis(butylthio) porphyrazine(CoPz(BuS)8) was assessed through photodegradation of the dye rhodamine B(RhB) in water under irradiation with a Xe lamp and aerated conditi...The photocatalytic activity of cobalt octakis(butylthio) porphyrazine(CoPz(BuS)8) was assessed through photodegradation of the dye rhodamine B(RhB) in water under irradiation with a Xe lamp and aerated conditions.The photocatalytic activity of CoPz(BuS)8 loaded on Al2O3 or SiO2@Fe3O4nanoparticles or coordinated with an axial azide ligand was also investigated.The results demonstrated that the photocatalytic activity of CoPz(BuS)8 loaded on Al2O3 was higher than that loaded on SiO2@Fe3O4.The kinetic curves of RhB degradation in aqueous solutions at different pH indicated the pseudo first-order kinetics of the reaction.The highest degradation rate for CoPz(BuS)8 loaded Al2O3 at pH = 4 after 160 min was 84.6%.However,the advantages of easier separation and recycling as well as the ability to terminate the reaction at any time for the CoPz(BuS)8 loaded SiO2@Fe3O4 cannot be ignored.When electron-rich NaN3 was coordinated with CoPz(BuS)8 as an axial ligand and loaded on Al2O3,the resulting catalyst produced more active oxygen species such as O2^- and HO· to promote the quicker degradation of RhB than that by the other catalysts.For the N3-coordinated CoPz(BuS)8 loaded on Al2O3,the reactions at pH = 4 and 7 distinctly deviated from first-order kinetics,and the degradation rate reached 77.6%after 80 min at pH = 4.展开更多
A core trisaccharide of laminin, β-D-Gal-(1→4)-β-D-GlcpNAc-(1→6)-α-D-Manp-OMe, with potential anti-rumor metastatic activity was designed and prepared. 2-Iodoglactosyl azide was used as the donor to construct...A core trisaccharide of laminin, β-D-Gal-(1→4)-β-D-GlcpNAc-(1→6)-α-D-Manp-OMe, with potential anti-rumor metastatic activity was designed and prepared. 2-Iodoglactosyl azide was used as the donor to construct 2-N-acetamido-2-deoxylactosyl moiety through an azidoiodo-glycosylation reaction. Simultaneously, 1, 2-trans-β-glycosic bond was formed stereoselectively in one step with a moderate yield. This novel procedure avoided the use of 2-amino-2-deoxyglucose as both donor and acceptor.展开更多
Wide potential windows were found at carbon nanotube film electrodes in neutral solutions after being treated with nitric acid and mixed acid. Electrochemical reversibility was investigated at carbon nanotube films wi...Wide potential windows were found at carbon nanotube film electrodes in neutral solutions after being treated with nitric acid and mixed acid. Electrochemical reversibility was investigated at carbon nanotube films with different pretreatments for ferri/ferrocyanide and quinone /hydroquinone. Carbon nanotube film electrodes presented quasi-reversible electrochemical behavior for both electrolytes. In the range of scan rate, carbon nanotube film electrodes treated with acids showed heterogeneous electron-transfer properties, which was mainly controlled by its electron state density on the surface of the film. On the whole, the carbon nanotube electrode with nitric acid treatment presented the best electrochemical behaviors, so we chose it as an analytical electrode to determine the trace compound in dilute solution. The results demonstrated that this new electrode material exhibits superior performance characteristics for the detection of azide anion.展开更多
Field and pot experiments were conducted using indica rice varieties with differential chalkiness. There were significant differences in root activity among the varieties. The percentages of chalky grains and chalky a...Field and pot experiments were conducted using indica rice varieties with differential chalkiness. There were significant differences in root activity among the varieties. The percentages of chalky grains and chalky area were both negatively correlated with root activity expressed as α-naphthylamine oxidation ability (RA) per gram of fresh root (RAfw) , RA per spikelet (RAgrn), or RA per sink capacity (RAsink). The RAsink was more closely related to chalkiness than RAt, and RAgrn when varieties differed greatly in panicle size and grain weight. Application of NO3^--N fertilizer at heading resulted in higher root activity and reduced chalkiness. Application of 30 mg/L NaN3 (respiration inhibitor) resulted in reduced root activity and increased chalkiness for one variety 'GD9501', but for the other variety 'Qinluai' was in reverse. The percentages of chalky grains and chalky area were negatively correlated with root activity at 10 days after heading under different chemical treatments (r=-0.8567^* and r=-0.9211^**, respectively).展开更多
The excited state structural dynamics of phenyl absorbing S2(A'), S3(A'), and S6(A') states were troseopy and complete active space self-consistent and the UV absorption bands were assigned on azide (PhN3) ...The excited state structural dynamics of phenyl absorbing S2(A'), S3(A'), and S6(A') states were troseopy and complete active space self-consistent and the UV absorption bands were assigned on azide (PhN3) after excitation to the light studied using the resonance Raman specfield calculations. The vibrational spectra the basis of the Fourier transform (FT)- Raman, FT-infrared measurements, the density-functional theory computations and the normal mode analysis. The A-, B-, and C-bands resonance Raman spectra in cyclohex- ane, acetonitrile, and methanol solvents were, respectively, obtained at 273.9, 252.7, 245.9, 228.7, 223.1, and 208.8 nm excitation wavelengths to probe the corresponding structural dynamics of PhN3. The results indicated that the structural dynamics in the S2 (A'), S3(A'), and S6(A') states were significantly different. The crossing points of the potential energy surfaces, S2S1(1) and S2S1(2), were predicted to play a key role in the low-lying excited state decay dynamics, in accordance with Kasha's rule, and NT=N8 dissociation. Two decay channels initiated from the Franck-Condon region of the S2(A') state were predicted: the radiative S2,min→S0 radiative decay and the S2→S1 internal conversion through the crossing points S2S1 (1)/S2S1(2).展开更多
Turmeric has long been used as a spice and food colouring agent in Asia. In the present investigation, the antimutagenic potential of curcumin was evaluated in Allium cepa root meristem cells. So far there is no repor...Turmeric has long been used as a spice and food colouring agent in Asia. In the present investigation, the antimutagenic potential of curcumin was evaluated in Allium cepa root meristem cells. So far there is no report on the biological properties of curcumin in plant test systems. The root tip cells were treated with sodium azide at 200 and 300 μg/ml for 3 h and curcumin was given at 5, 10 and 20 μg/ml for 16 h, prior to sodium azide treatment. The tips were squashed after colchicine treatment and the cells were analyzed for chromosome aberration and mitotic index. Curcumin induces chromosomal aberration in Allium cepa root tip cells in an insignificant manner, when compared with untreated control. Sodium azide alone induces chromosomal aberrations significantly with increasing concentrations. The total number of aberrations was significantly reduced in root tip cells pretreated with curcumin. The study reveals that curcumin has antimutagenic potential against sodium azide induced chromosomal aberrations in Allium cepa root meristem cells. In addition, it showed mild cytotoxicity by reducing the percentage of mitotic index in all curcumin treated groups, but the mechanism of action remains unknown. The antimutagenic potential of curcumin is effective at 5 μg/ml in Allium cepa root meristem cells.展开更多
A new method for the synthesis of 4,4′,6,6′-tetra(azido)azo-1,3,5-triazine (TAAT) is described. The key intermediate 4,4′,6,6′-tetra(azido)hydrazo-1,3,5-triazine (TAHT) was synthesized by nucleophilic substitution...A new method for the synthesis of 4,4′,6,6′-tetra(azido)azo-1,3,5-triazine (TAAT) is described. The key intermediate 4,4′,6,6′-tetra(azido)hydrazo-1,3,5-triazine (TAHT) was synthesized by nucleophilic substitution in the case of sodium azide as nucleophile. N-Bromosuccinide (NBS) was used as oxidant to oxidize TAHT by a tractable operation under mild reaction condition. The target compound TAAT was obtained with a facile process and high overall yield of 81%. The structures of TAAT and its intermediates were identified by spectroscopic methods.展开更多
Ligands containing NH groups often show special characteristics.In this paper,a well-defined dinuclear Cu(II) complex bearing an unsymmetrical bipyridine-pyrazole-amine ligand was synthesized by the condensation of ...Ligands containing NH groups often show special characteristics.In this paper,a well-defined dinuclear Cu(II) complex bearing an unsymmetrical bipyridine-pyrazole-amine ligand was synthesized by the condensation of N–H to release H2O.Using sodium L-ascorbate as a reductant,the binuclear complex showed excellent activity in 1,3-dipolar cycloaddition reactions between alkynes and azides to obtain 1,4-disubstituted triazoles in 95%–99% isolated yields.展开更多
Conducted in the ionic liquids, activated and inactivated halides, acyl chlorides, tosylate, and bezotriazolyl acylates were converted to corresponding azide and thiocyanide compounds in high yields under mild conditi...Conducted in the ionic liquids, activated and inactivated halides, acyl chlorides, tosylate, and bezotriazolyl acylates were converted to corresponding azide and thiocyanide compounds in high yields under mild conditions.展开更多
Sodium azide (NaN3) (2 mM) was used to induce mutation in black soybean variety CRWD for improvement of isoflavone content. The individual selections were made in M6, M7 and M8 generations, respectively. Both high lev...Sodium azide (NaN3) (2 mM) was used to induce mutation in black soybean variety CRWD for improvement of isoflavone content. The individual selections were made in M6, M7 and M8 generations, respectively. Both high levels of isoflavones and medium seed size traits were used as selection criteria. Across three growth seasons, the selected five NaN3-induced mutants accumulated more total isoflavones (average increases of 5% to 25%) than their wild type variety CRWD. Four mutants yielded more (average increases of 17% to 25%) than CRWD. Both mutants SA-M-03 (yellow cotyledon) and SA-M-05 (green cotyledon) are rich in isoflavones and may be useful in food and other applications.展开更多
The title complex [Zn2L2(N3)2(H2O)2]·2H2O (L = N-(2-pyridylmethylidene) taurine) has been synthesized in a methanol-water solution. The crystal belongs to monoclinic, space group P2 1/C with a = 15.8064...The title complex [Zn2L2(N3)2(H2O)2]·2H2O (L = N-(2-pyridylmethylidene) taurine) has been synthesized in a methanol-water solution. The crystal belongs to monoclinic, space group P2 1/C with a = 15.8064(10), b = 10.5015(5), c = 17.3193(11) ,A, β= 111.314(2)°, V = 2678.2 (3) ,A ^3 C16H26N10O10S2Zn2, Mr = 713.33, Z = 4, DC = 1.769 g/cm^3, μ = 2.017 mm^-1 and F(000) = 1456. The asymmetric unit consists of two half-molecules of the complex and two water molecules. Four N and two O atoms form the coordination environment of each Zn atom, resulting in a distorted octahedral configuration. The two halves of each independent dimer are related by a crystallographic inversion centre, which lies at the centre of the ring formed by two Zn atoms and the coordinating atoms of the two azide anions. The average separation of Zn(Ⅱ)...Zn(Ⅱ) is 3.322 A. The molecules are linked by O-H...O hydrogen bonds, generating an interesting zigzag infinite chain structure in the ac plane.展开更多
基金Project supported financially by the Program for the Development of Science and Technology of Jilin Province,China(Grant Nos.YDZJ202301ZYTS382,YDZJ202201ZYTS316,and 20230101285JC)the National Natural Science Foundation of China(Grant No.11904128)+1 种基金the Program for Science and Technology of Education Department of Jilin Province,China(Grant Nos.JJKH20220438KJ and JJKH20220423KJ)the Program for the Jilin Provincial Development and Reform Commission Project(Grant No.2022C040-6)。
文摘The high-pressure structure and elastic properties of calcium azide(Ca(N_(3))_(2))were investigated using in-situ highpressure x-ray diffraction and Raman scattering up to 54 GPa and 19 GPa,respectively.The compressibility of Ca(N_(3))_(2)changed as the pressure increased,and no phase transition occurred within the pressure from ambient pressure up to 54 GPa.The measured zero-pressure bulk modulus of Ca(N_(3))_(2)is higher than that of other alkali metal azides,due to differences in the ionic character of their metal-azide bonds.Using CASTEP,all vibration modes of Ca(N_(3))_(2)were accurately identified in the vibrational spectrum at ambient pressure.In the high-pressure vibration study,several external modes(ext.)and internal bending modes(ν_(2))of azide anions(N_(3)^(-))softened up to~7 GPa and then hardened beyond that pressure.This evidence is consistent with the variation observed in the F_(E)–f_(E)data analyzed from the XRD result,where the slope of the curve changes at 7.1 GPa.The main behaviors under pressure are the alternating compression,rotation,and bending of N_(3)^(-)ions.The bending behavior makes the structure of Ca(N_(3))_(2)more stable under pressure.
基金the financial support provided by the National Natural Science Foundation of China(Grant No.11872013).
文摘Copper-based azide(Cu(N_(3))2 or CuN_(3),CA)chips synthesized by in-situ azide reaction and utilized in miniaturized explosive systems has become a hot research topic in recent years.However,the advantages of in-situ synthesis method,including small size and low dosage,bring about difficulties in quantitative analysis and differences in ignition capabilities of CA chips.The aim of present work is to develop a simplified quantitative analysis method for accurate and safe analysis of components in CA chips to evaluate and investigate the corresponding ignition ability.In this work,Cu(N_(3))2 and CuN_(3)components in CA chips were separated through dissolution and distillation by utilizing the difference in solubility and corresponding content was obtained by measuring N_(3)-concentration through spectrophotometry.The spectrophotometry method was optimized by studying influencing factors and the recovery rate of different separation methods was studied,ensuring the accuracy and reproducibility of test results.The optimized method is linear in range from 1.0-25.0 mg/L,with a correlation coefficient R^(2)=0.9998,which meets the requirements of CA chips with a milligram-level content test.Compared with the existing ICP method,component analysis results of CA chips obtained by spectrophotometry are closer to real component content in samples and have satisfactory accuracy.Moreover,as its application in miniaturized explosive systems,the ignition ability of CA chips with different component contents for direct ink writing CL-20 and the corresponding mechanism was studied.This study provided a basis and idea for the design and performance evaluation of CA chips in miniaturized explosive systems.
文摘In the pursuit of advancing imidazolium-based energetic ionic liquids (EILs),the current study is devoted to the synthesis and characterization of 1,3-dibutyl-imidazolium azide ([BBIm][N_(3)]),as a novel member in this ionic liquids class.The chemical structure of this EIL was rigorously characterized and confirmed using FTIR spectroscopy,1D,and 2D-NMR analyses.The thermal behavior assessment was conducted through DSC and TGA experiments.DSC analysis revealed an endothermic glass transition at T_(g)=-61℃,followed by an exothermic degradation event at T_(onset)=311℃.Similarly,TGA thermograms exhibited a one-stage decomposition process resulting in 100% mass loss of the sample.Furthermore,the short-term thermal stability of the azide EIL was investigated by combining the non-isothermal TGA data with the TAS,it-KAS,and VYA/CE isoconversional kinetic approaches.Consequently,the Arrhenius parameters(E_(a)=154 kJ·mol^(-1),Log(A/s^(-1))=11.8) and the most probable reaction model g(a) were determined.The observed high decomposition temperatures and the significantly elevated activation energy affirm the enhanced thermal stability of the modified EIL.These findings revealed that[BBIm][N_(3)]EIL can be a promising candidate for advanced energetic material application.
基金National Natural Science Foundation of China(Grant No.11832006,U1530262,21975024).
文摘Aluminum(Al) particles are good fuel additives to improve the energy output performances of explosives. Under detonation environment, reaction delay of Al particles plays a key role in the energy release efficiency. Up to date, reaction delay of Al particles is still limited by the efficiency of mass and heat transfer from oxidizers to Al particles. To address this issue, a homogeneous fuel-oxidizer assembly has recently become a promising strategy. In this work, oxidizer-activated Al fuel particles(ALG) were prepared with glycidyl azide polymer(GAP) as the oxidizer. The ALG was in uniform spherical shape and core-shell structure with shell layer of around 5 nm which was observed by scanning electron microscope and transmission electron microscope. The localized nanoscale mid-IR measurement detected the uniform distribution of characteristic absorption bond of GAP in the shell layer which confirmed the homogenous fuel-oxidizer structure of ALG. A thermal gravimetric analysis of ALG at ultrafast heating rate of 1000℃/min under argon atmosphere was conducted. The decomposition of GAP finished much earlier than that of GAP at heating rate of 10℃/min. Under ultrafast high laser fluence, the reaction response of ALG was characterized and compared with that of micro-sized Al(μAl). With the increase of laser energy, the propagation distance of the shock wave increased. However, the velocity histories were nearly the same when energies were lower than 299 mJ or higher than 706 mJ. The propagation distance of the shock wave for ALG was 0.5 mm larger than that for μAl at 2.1 μs. The underwater explosion showed the peak pressure and the shock wave energy of the ALG-based explosive were both higher than those of the μAl-based explosive at 2.5 m. This study shows the feasibility to improve the energy release of Al-based explosives via using the oxidizer-activated Al fuel particles with energetic polymer as the oxidizer.
基金the financial support by Postgraduate Research & Practice Innovation Program from Jiangsu Science and Technology Department under Grant number KYCX19_0320。
文摘Copper azide(CA), as a primary explosive with high energy density, has not been practically used so far because of its high electrostatic sensitivity. The Cu2O@HKUST-1 core-shell structure hybrid material was synthesized by the “bottle around ship” methodology in this research by regulating the dissolution rate of Cu2O and the generation rate of metal-organic framework(MOF) materials. Cu2O@HKUST-1 was carbonized to form a Cu O@porous carbon(CuO@PC) composite material. CuO@PC was synthesized into a copper azide(CA) @PC composite energetic material through a gas-solid phase in-situ azidation reaction.CA is encapsulated in PC framework, which acts as a nanoscale Faraday cage, and its excellent electrical conductivity prevents electrostatic charges from accumulating on the energetic material’s surface. The CA@PC composite energetic material has a CA content of 89.6%, and its electrostatic safety is nearly 30times that of pure CA(1.47 mJ compared to 0.05 mJ). CA@PC delivers an outstanding balance of safety and energy density compared to similar materials.
基金financial support from the National Natural Science Foundation of China(Grant No.12102051)the State Key Laboratory of Explosion Science and Technology(Grant No.QNKT2022-04)。
文摘Due to its extremely low electrostatic sensitivity,copper azide primary explosive is greatly limited in practical applications.In this study,a composite film with Cu-MOF in-situ growth on carbon nanofilm was prepared by electrospinning and solvothermal methods,and CNF@Cu-N3film with electrostatic safety was obtained by carbonization and azide later.Its electrostatic sensitivity(E50)was greatly increased from 0.05 mJ of raw materials to 4.06 mJ,and still maintained a good detonation performance which could successfully detonate the CL-20 secondary explosive.This is mainly due to the synergistic effect of the carbon film and the MOF structure,which greatly improves the conductivity of the entire system and the uniform distribution of copper particles,providing a new preparation strategy for metal azide film that is suitable for the micro-initiator device.
文摘The development trend of miniaturization, chipization, integration, and intelligence of new energetic devices has put forward higher requirements for primary explosives, and the toxicity of lead-containing initiating explosives has also caused increasing concerns. Nano copper azide, due to its green and high-energy characteristics, has attracted increasing interest from researchers in recent years. The research progress of Nano copper azide energetic materials is summarized from the design and preparation of composite energetic materials, and the analysis of sensitivity changes. On this basis, the key points to realize its application prospects are discussed: Develop the preparation method of carbon material modification and the combination of processing and forming to prepare new composite materials to make up for their overly sensitive defects, while giving full play to their advantages of high energy density. By comparing the existing research progress of Nano copper azide, we can understand its performance parameters more systematically, and guide the further application of Nano copper azide. .
文摘bis(azidomethyl) 3,3′ bis(1,2,4 oxadiazole)(Ⅰ) and bis(azidoacetamino) oxazofurazan(Ⅱ) were synthesized. The structures of these two compounds have been identified by IR, 1H NMR, MS and elemental analysis. Azido groups were introduced into furazan derivatives and energetic materials of high nitrogen content and high enthalpy of formation can be obtained. The densities of compound Ⅰ and Ⅱ are relatively high. Compound Ⅰ is an azide of lower melting point, it is hopeful to be applied as energetic plastic additives.
文摘Tazobactam,β lactamase inhibitor, was synthesized from 6 aminopenicillanic acid through eleven steps, including diazotization, bromination, oxidation, chlorization, cyclization, deprotection and so on. The designed route was examined, particularly the azide substitution and cyclization. In the latter reaction, vinyl acetic ester was employed in place of acetylene.
基金supported by National Natural Science Foundation of China (20977115, 21272281)Natural Science Foundation of Hubei Province (2014CFB919)the Science and Technology Plan Innovation Team of Wuhan City (2015070504020220)~~
文摘The photocatalytic activity of cobalt octakis(butylthio) porphyrazine(CoPz(BuS)8) was assessed through photodegradation of the dye rhodamine B(RhB) in water under irradiation with a Xe lamp and aerated conditions.The photocatalytic activity of CoPz(BuS)8 loaded on Al2O3 or SiO2@Fe3O4nanoparticles or coordinated with an axial azide ligand was also investigated.The results demonstrated that the photocatalytic activity of CoPz(BuS)8 loaded on Al2O3 was higher than that loaded on SiO2@Fe3O4.The kinetic curves of RhB degradation in aqueous solutions at different pH indicated the pseudo first-order kinetics of the reaction.The highest degradation rate for CoPz(BuS)8 loaded Al2O3 at pH = 4 after 160 min was 84.6%.However,the advantages of easier separation and recycling as well as the ability to terminate the reaction at any time for the CoPz(BuS)8 loaded SiO2@Fe3O4 cannot be ignored.When electron-rich NaN3 was coordinated with CoPz(BuS)8 as an axial ligand and loaded on Al2O3,the resulting catalyst produced more active oxygen species such as O2^- and HO· to promote the quicker degradation of RhB than that by the other catalysts.For the N3-coordinated CoPz(BuS)8 loaded on Al2O3,the reactions at pH = 4 and 7 distinctly deviated from first-order kinetics,and the degradation rate reached 77.6%after 80 min at pH = 4.
基金National Science Foundation of China (Grant No.20732001 and 90713004).
文摘A core trisaccharide of laminin, β-D-Gal-(1→4)-β-D-GlcpNAc-(1→6)-α-D-Manp-OMe, with potential anti-rumor metastatic activity was designed and prepared. 2-Iodoglactosyl azide was used as the donor to construct 2-N-acetamido-2-deoxylactosyl moiety through an azidoiodo-glycosylation reaction. Simultaneously, 1, 2-trans-β-glycosic bond was formed stereoselectively in one step with a moderate yield. This novel procedure avoided the use of 2-amino-2-deoxyglucose as both donor and acceptor.
文摘Wide potential windows were found at carbon nanotube film electrodes in neutral solutions after being treated with nitric acid and mixed acid. Electrochemical reversibility was investigated at carbon nanotube films with different pretreatments for ferri/ferrocyanide and quinone /hydroquinone. Carbon nanotube film electrodes presented quasi-reversible electrochemical behavior for both electrolytes. In the range of scan rate, carbon nanotube film electrodes treated with acids showed heterogeneous electron-transfer properties, which was mainly controlled by its electron state density on the surface of the film. On the whole, the carbon nanotube electrode with nitric acid treatment presented the best electrochemical behaviors, so we chose it as an analytical electrode to determine the trace compound in dilute solution. The results demonstrated that this new electrode material exhibits superior performance characteristics for the detection of azide anion.
基金Guangdong Provincial Natural Science Foundation(20010102)the PhD-Degree-Bearer's Startup Foundation of Guangdong Academy of Agricultural Sciences(00-Boshi-05).
文摘Field and pot experiments were conducted using indica rice varieties with differential chalkiness. There were significant differences in root activity among the varieties. The percentages of chalky grains and chalky area were both negatively correlated with root activity expressed as α-naphthylamine oxidation ability (RA) per gram of fresh root (RAfw) , RA per spikelet (RAgrn), or RA per sink capacity (RAsink). The RAsink was more closely related to chalkiness than RAt, and RAgrn when varieties differed greatly in panicle size and grain weight. Application of NO3^--N fertilizer at heading resulted in higher root activity and reduced chalkiness. Application of 30 mg/L NaN3 (respiration inhibitor) resulted in reduced root activity and increased chalkiness for one variety 'GD9501', but for the other variety 'Qinluai' was in reverse. The percentages of chalky grains and chalky area were negatively correlated with root activity at 10 days after heading under different chemical treatments (r=-0.8567^* and r=-0.9211^**, respectively).
基金This work is supported by the National Natural Science Foundation of China (No.21473163, No.21033002, No.21202032) and the National Basic Research Program of China (No.2013CB834604).
文摘The excited state structural dynamics of phenyl absorbing S2(A'), S3(A'), and S6(A') states were troseopy and complete active space self-consistent and the UV absorption bands were assigned on azide (PhN3) after excitation to the light studied using the resonance Raman specfield calculations. The vibrational spectra the basis of the Fourier transform (FT)- Raman, FT-infrared measurements, the density-functional theory computations and the normal mode analysis. The A-, B-, and C-bands resonance Raman spectra in cyclohex- ane, acetonitrile, and methanol solvents were, respectively, obtained at 273.9, 252.7, 245.9, 228.7, 223.1, and 208.8 nm excitation wavelengths to probe the corresponding structural dynamics of PhN3. The results indicated that the structural dynamics in the S2 (A'), S3(A'), and S6(A') states were significantly different. The crossing points of the potential energy surfaces, S2S1(1) and S2S1(2), were predicted to play a key role in the low-lying excited state decay dynamics, in accordance with Kasha's rule, and NT=N8 dissociation. Two decay channels initiated from the Franck-Condon region of the S2(A') state were predicted: the radiative S2,min→S0 radiative decay and the S2→S1 internal conversion through the crossing points S2S1 (1)/S2S1(2).
基金Project (No. SP/SO/HS-21/2002) supported by the Department of Science and Technology, Government of India, New Delhi
文摘Turmeric has long been used as a spice and food colouring agent in Asia. In the present investigation, the antimutagenic potential of curcumin was evaluated in Allium cepa root meristem cells. So far there is no report on the biological properties of curcumin in plant test systems. The root tip cells were treated with sodium azide at 200 and 300 μg/ml for 3 h and curcumin was given at 5, 10 and 20 μg/ml for 16 h, prior to sodium azide treatment. The tips were squashed after colchicine treatment and the cells were analyzed for chromosome aberration and mitotic index. Curcumin induces chromosomal aberration in Allium cepa root tip cells in an insignificant manner, when compared with untreated control. Sodium azide alone induces chromosomal aberrations significantly with increasing concentrations. The total number of aberrations was significantly reduced in root tip cells pretreated with curcumin. The study reveals that curcumin has antimutagenic potential against sodium azide induced chromosomal aberrations in Allium cepa root meristem cells. In addition, it showed mild cytotoxicity by reducing the percentage of mitotic index in all curcumin treated groups, but the mechanism of action remains unknown. The antimutagenic potential of curcumin is effective at 5 μg/ml in Allium cepa root meristem cells.
文摘A new method for the synthesis of 4,4′,6,6′-tetra(azido)azo-1,3,5-triazine (TAAT) is described. The key intermediate 4,4′,6,6′-tetra(azido)hydrazo-1,3,5-triazine (TAHT) was synthesized by nucleophilic substitution in the case of sodium azide as nucleophile. N-Bromosuccinide (NBS) was used as oxidant to oxidize TAHT by a tractable operation under mild reaction condition. The target compound TAAT was obtained with a facile process and high overall yield of 81%. The structures of TAAT and its intermediates were identified by spectroscopic methods.
基金supported by the China Postdoctoral Science Foundation(2013M541254)the National Natural Science Foundation of China(21502120)+1 种基金the Program for Innovative Research Team of the Ministry of Educationthe Program for Liaoning Innovative Research Team in University~~
文摘Ligands containing NH groups often show special characteristics.In this paper,a well-defined dinuclear Cu(II) complex bearing an unsymmetrical bipyridine-pyrazole-amine ligand was synthesized by the condensation of N–H to release H2O.Using sodium L-ascorbate as a reductant,the binuclear complex showed excellent activity in 1,3-dipolar cycloaddition reactions between alkynes and azides to obtain 1,4-disubstituted triazoles in 95%–99% isolated yields.
文摘Conducted in the ionic liquids, activated and inactivated halides, acyl chlorides, tosylate, and bezotriazolyl acylates were converted to corresponding azide and thiocyanide compounds in high yields under mild conditions.
文摘Sodium azide (NaN3) (2 mM) was used to induce mutation in black soybean variety CRWD for improvement of isoflavone content. The individual selections were made in M6, M7 and M8 generations, respectively. Both high levels of isoflavones and medium seed size traits were used as selection criteria. Across three growth seasons, the selected five NaN3-induced mutants accumulated more total isoflavones (average increases of 5% to 25%) than their wild type variety CRWD. Four mutants yielded more (average increases of 17% to 25%) than CRWD. Both mutants SA-M-03 (yellow cotyledon) and SA-M-05 (green cotyledon) are rich in isoflavones and may be useful in food and other applications.
基金This work was supported by the Natural Science Foundation of Guangxi (No. 0339034) and the Science Research Foundation of Guangxi Normal University
文摘The title complex [Zn2L2(N3)2(H2O)2]·2H2O (L = N-(2-pyridylmethylidene) taurine) has been synthesized in a methanol-water solution. The crystal belongs to monoclinic, space group P2 1/C with a = 15.8064(10), b = 10.5015(5), c = 17.3193(11) ,A, β= 111.314(2)°, V = 2678.2 (3) ,A ^3 C16H26N10O10S2Zn2, Mr = 713.33, Z = 4, DC = 1.769 g/cm^3, μ = 2.017 mm^-1 and F(000) = 1456. The asymmetric unit consists of two half-molecules of the complex and two water molecules. Four N and two O atoms form the coordination environment of each Zn atom, resulting in a distorted octahedral configuration. The two halves of each independent dimer are related by a crystallographic inversion centre, which lies at the centre of the ring formed by two Zn atoms and the coordinating atoms of the two azide anions. The average separation of Zn(Ⅱ)...Zn(Ⅱ) is 3.322 A. The molecules are linked by O-H...O hydrogen bonds, generating an interesting zigzag infinite chain structure in the ac plane.