利用差示扫描量热法得到B/KNO3的热分解曲线,用K iss inger方程估算了B/KNO3的表观活化能,用标准作图法得到最可几热分解机理函数,再用积分法求得不同升温速率下热分解的动力学参数活化能E和指前因子A。计算结果表明,升温速率增大,E和A...利用差示扫描量热法得到B/KNO3的热分解曲线,用K iss inger方程估算了B/KNO3的表观活化能,用标准作图法得到最可几热分解机理函数,再用积分法求得不同升温速率下热分解的动力学参数活化能E和指前因子A。计算结果表明,升温速率增大,E和A都略有减小,但都与非机理计算结果有较好的吻合。展开更多
Aluminum-matrix boron carbide (B4Cp/Al) is a kind of neutron absorbing material widely used in nuclear spent fuel storage. In order to improve the tensile property of B4Cp/Al composites, a new type of nano-Al2O3 parti...Aluminum-matrix boron carbide (B4Cp/Al) is a kind of neutron absorbing material widely used in nuclear spent fuel storage. In order to improve the tensile property of B4Cp/Al composites, a new type of nano-Al2O3 particle (Al2O3np) reinforced B4Cp/Al + Al2O3np composites were prepared by powder metallurgy method. The Monte Carlo particle transport program (MCNP) was used to determine the influence of Al2O3np on the thermal neutron absorptivity of composites. The universal material testing machine and scanning electron microscope (SEM) were used to study the mechanical properties, microstructure and fracture morphology of B4Cp/Al composites. The results indicated that the neutron absorption properties of B4Cp/Al composites were not affected by the addition of nano-Al2O3 particles in the range of 1 wt%-15 wt%. The addition of Al2O3np can obviously reduce the grain size of B4Cp/Al matrix metals thus improve the tensile strength of the composites. The addition threshold of Al2O3np is about 2.5 wt%. Both B4Cp and Al2O3np change the fracture characteristics of the composites from toughness to brittleness, and the latter is more important.展开更多
A novel In203/Bi24O31Br10 composite photocatalyst, where In2O3 nanoparticleswith the diameter of about 5-10 nm were tightly attached on the surface of Bi24O31Br10 plates, wasprepared by using hydrolysis, impregnation ...A novel In203/Bi24O31Br10 composite photocatalyst, where In2O3 nanoparticleswith the diameter of about 5-10 nm were tightly attached on the surface of Bi24O31Br10 plates, wasprepared by using hydrolysis, impregnation method and post-thermal process. Photocatalyticactivity was evaluated by the degradation of Rhodamine B under the visible light irradiation.Effects of the contents of In203 nanoparticles on the optical property and photocatalytic activity of In203/Bi24O31Br10 composite were also investigated. Compared with neat In203 and Bi24O31Brlomaterials, 15In203/Bi24O31Br10 composite exhibits the best photocatalytic activity owing to theefficient separation of photogenerated electron and hole pairs, which is evidenced byphotoluminence spectra. More than 95% of Rhodamine B solution can be degraded by15In203/Bi24O31Brlo sample in 30 min.展开更多
To improve the wear resistance and corrosion resistance of magnesium alloys, a 5 kW continuous wave CO2 laser was used to investigate the laser surface cladding on AZ31 B magnesium alloys with Al-Si/Al2O3-TiO2 composi...To improve the wear resistance and corrosion resistance of magnesium alloys, a 5 kW continuous wave CO2 laser was used to investigate the laser surface cladding on AZ31 B magnesium alloys with Al-Si/Al2O3-TiO2 composite powders. A detailed microstructure, chemical composition, and phase analysis of the composite coatings were studied by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). The laser cladding shows good metallurgical bonding with the substrate. The composite coatings are composed of Mgl7Al12, Al3Mg2, Mg2Si, Al2O3, and TiO2 phases. Compared to the average microhardness (50HV0.05) of the AZ3 1 B substrate, that of the composite coatings (230HV0.05) is improved significantly. The wear resistances of the surface layers were evaluated in detail. The results demonstrate that the wear resistances of the laser surface-modified samples are considerably improved compared to the substrate. It also show that the composite coatings exhibit better corrosion resistance than that of the substrate in 3.5wt% NaCI solution.展开更多
The equilibrium phases and adiabatic temperature for combustion synthesis and reaction hot pressing of Al 2O 3/B 4C employing ① Al, B 2O 3 and C ② C, B, Al 2O 3 as starting reactants were analyzed by the CALP...The equilibrium phases and adiabatic temperature for combustion synthesis and reaction hot pressing of Al 2O 3/B 4C employing ① Al, B 2O 3 and C ② C, B, Al 2O 3 as starting reactants were analyzed by the CALPHAD technique. It is shown that the equilibrium phases at the adiabatic temperature in the combusion system (1) are not the intended composite Al 2O 3/B 4C but other phases. Good agreement with the experimental data was achieved for the calculated adiabatic temperature. The results were discussed with respect to the elimination of the by product in the combustion synthesis. It also revealed that the reactant mixture (2) is a weak exothermic or endothermic reaction system, which can be employed in the reaction hot pressing.展开更多
TiB2-Al2O3 composite powders were produced by self-propagating high-temperature synthesis(SHS) method with reductive process from B2O3-TiO2-AI system. X-ray diffraction(XRD) and scanning electron microscopy(SEM...TiB2-Al2O3 composite powders were produced by self-propagating high-temperature synthesis(SHS) method with reductive process from B2O3-TiO2-AI system. X-ray diffraction(XRD) and scanning electron microscopy(SEM) analyses show the presence of TiB2 and Al2O3 only in the composite powders produced by SHS. The powders are uniform and free-agglomerate. Transmission electron microscopy (TEM) and high resolution electron microscopy (HREM) observation of microstructure of the composite powders indicate that the interfaces of the TiB2-Al2O3 bond well, without any interfacial reaction products. It is proposed that the good interfacial bonding of the composite powders can be resulted from the TiB2 particles crystallizing and growing on the Al2O3 particles surface with surface defects acting as nucleation centers.展开更多
基金Funded by Natural National Science Foundation of China(NSFC)(No.11305149)National High-Tech R&D Program(863 Program)(No.2013AA030704)。
文摘Aluminum-matrix boron carbide (B4Cp/Al) is a kind of neutron absorbing material widely used in nuclear spent fuel storage. In order to improve the tensile property of B4Cp/Al composites, a new type of nano-Al2O3 particle (Al2O3np) reinforced B4Cp/Al + Al2O3np composites were prepared by powder metallurgy method. The Monte Carlo particle transport program (MCNP) was used to determine the influence of Al2O3np on the thermal neutron absorptivity of composites. The universal material testing machine and scanning electron microscope (SEM) were used to study the mechanical properties, microstructure and fracture morphology of B4Cp/Al composites. The results indicated that the neutron absorption properties of B4Cp/Al composites were not affected by the addition of nano-Al2O3 particles in the range of 1 wt%-15 wt%. The addition of Al2O3np can obviously reduce the grain size of B4Cp/Al matrix metals thus improve the tensile strength of the composites. The addition threshold of Al2O3np is about 2.5 wt%. Both B4Cp and Al2O3np change the fracture characteristics of the composites from toughness to brittleness, and the latter is more important.
基金supported by the Natural Science Foundation of Fujian Province(2016J01740)National Natural Science Foundation of China(21473096)the Outstanding Youth Scientific Research Cultivation Plan in Fujian Province University,and the guiding project of Fujian Province(2016Y0073)
文摘A novel In203/Bi24O31Br10 composite photocatalyst, where In2O3 nanoparticleswith the diameter of about 5-10 nm were tightly attached on the surface of Bi24O31Br10 plates, wasprepared by using hydrolysis, impregnation method and post-thermal process. Photocatalyticactivity was evaluated by the degradation of Rhodamine B under the visible light irradiation.Effects of the contents of In203 nanoparticles on the optical property and photocatalytic activity of In203/Bi24O31Br10 composite were also investigated. Compared with neat In203 and Bi24O31Brlomaterials, 15In203/Bi24O31Br10 composite exhibits the best photocatalytic activity owing to theefficient separation of photogenerated electron and hole pairs, which is evidenced byphotoluminence spectra. More than 95% of Rhodamine B solution can be degraded by15In203/Bi24O31Brlo sample in 30 min.
基金Funded by the national Natural Science Foundation of China (No. 51075293)the Foundation for Development of Science and Technology of Taiyuan University of Technology,China(No.K201014)
文摘To improve the wear resistance and corrosion resistance of magnesium alloys, a 5 kW continuous wave CO2 laser was used to investigate the laser surface cladding on AZ31 B magnesium alloys with Al-Si/Al2O3-TiO2 composite powders. A detailed microstructure, chemical composition, and phase analysis of the composite coatings were studied by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). The laser cladding shows good metallurgical bonding with the substrate. The composite coatings are composed of Mgl7Al12, Al3Mg2, Mg2Si, Al2O3, and TiO2 phases. Compared to the average microhardness (50HV0.05) of the AZ3 1 B substrate, that of the composite coatings (230HV0.05) is improved significantly. The wear resistances of the surface layers were evaluated in detail. The results demonstrate that the wear resistances of the laser surface-modified samples are considerably improved compared to the substrate. It also show that the composite coatings exhibit better corrosion resistance than that of the substrate in 3.5wt% NaCI solution.
文摘The equilibrium phases and adiabatic temperature for combustion synthesis and reaction hot pressing of Al 2O 3/B 4C employing ① Al, B 2O 3 and C ② C, B, Al 2O 3 as starting reactants were analyzed by the CALPHAD technique. It is shown that the equilibrium phases at the adiabatic temperature in the combusion system (1) are not the intended composite Al 2O 3/B 4C but other phases. Good agreement with the experimental data was achieved for the calculated adiabatic temperature. The results were discussed with respect to the elimination of the by product in the combustion synthesis. It also revealed that the reactant mixture (2) is a weak exothermic or endothermic reaction system, which can be employed in the reaction hot pressing.
文摘TiB2-Al2O3 composite powders were produced by self-propagating high-temperature synthesis(SHS) method with reductive process from B2O3-TiO2-AI system. X-ray diffraction(XRD) and scanning electron microscopy(SEM) analyses show the presence of TiB2 and Al2O3 only in the composite powders produced by SHS. The powders are uniform and free-agglomerate. Transmission electron microscopy (TEM) and high resolution electron microscopy (HREM) observation of microstructure of the composite powders indicate that the interfaces of the TiB2-Al2O3 bond well, without any interfacial reaction products. It is proposed that the good interfacial bonding of the composite powders can be resulted from the TiB2 particles crystallizing and growing on the Al2O3 particles surface with surface defects acting as nucleation centers.