Sodium-ion batteries(SIBs) and hybrid capacitors(SIHCs) have garnered significant attention in energy storage due to their inherent advantages,including high energy density,cost-effectiveness,and enhanced safety.Howev...Sodium-ion batteries(SIBs) and hybrid capacitors(SIHCs) have garnered significant attention in energy storage due to their inherent advantages,including high energy density,cost-effectiveness,and enhanced safety.However,developing high-performance anode materials to improve sodium storage performa nce still remains a major challenge.Here,a facile one-pot method has been developed to fabricate a hybrid of MoSeTe nanosheets implanted within the N,F co-doped honeycomb carbon skeleton(MoSeTe/N,F@C).Experimental results demonstrate that the incorporation of large-sized Te atoms into MoSeTe nanosheets enlarges the layer spacing and creates abundant anion vacancies,which effectively facilitate the insertion/extraction of Na^(+) and provide numerous ion adsorption sites for rapid surface capacitive behavior.Additionally,the heteroatoms N,F co-doped honeycomb carbon skeleton with a highly conductive network can restrain the volume expansion and boost reaction kinetics within the electrode.As anticipated,the MoSeTe/N,F@C anode exhibits high reversible capacities along with exceptional cycle stability.When coupled with Na_(3)V_(2)(PO_(4))_(3)@C(NVPF@C) to form SIB full cells,the anode delivers a reversible specific capacity of 126 mA h g^(-1) after 100 cycles at 0.1 A g^(-1).Furthermore,when combined with AC to form SIHC full cells,the anode demonstrates excellent cycling stability with a reversible specific capacity of50 mA h g^(-1) keeping over 3700 cycles at 1.0 A g^(-1).In situ XRD,ex situ TEM characterization,and theoretical calculations(DFT) further confirm the reversibility of sodium storage in MoSeTe/N,F@C anode materials during electrochemical reactions,highlighting their potential for widespread practical application.This work provides new insights into the promising utilization of advanced transition metal dichalcogenides as anode materials for Na^(+)-based energy storage devices.展开更多
The development of simple and effective strategies to prepare electrocatalysts,which possess unique and stable structures comprised of metal/nonmetallic atoms for oxygen reduction reaction(ORR)and oxygen evolution rea...The development of simple and effective strategies to prepare electrocatalysts,which possess unique and stable structures comprised of metal/nonmetallic atoms for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),is currently an urgent issue.Herein,an efficient bifunctional electrocatalyst featured by ultralong N,S-doped carbon nano-hollow-sphere chains about 1300 nm with encapsulated Co nanoparticles(Co-CNHSCs)is developed.The multifunctional catalytic properties of Co together with the heteroatom-induced charge redistribution(i.e.,modulating the electronic structure of the active site)result in superior catalytic activities toward OER and ORR in alkaline media.The optimized catalyst Co-CNHSC-3 displays an outstanding electrocatalytic ability for ORR and OER,a high specific capacity of 1023.6 mAh gZn^(-1),and excellent reversibility after 80 h at 10mA cm^(-2)in a Zn-air battery system.This work presents a new strategy for the design and synthesis of efficient multifunctional carbon-based catalysts for energy storage and conversion devices.展开更多
This work aims to solve the problems of low reaction activity of Cu-based catalysts and agglomeration of active centers in acetylene hydrochlorination.Cu-based catalysts supported by NAP co-doped activated carbon(AC)w...This work aims to solve the problems of low reaction activity of Cu-based catalysts and agglomeration of active centers in acetylene hydrochlorination.Cu-based catalysts supported by NAP co-doped activated carbon(AC)with different content(mCu-xNP/AC)were manufactured and applied in the acetylene hydrochlorination reaction.It was found that the doping of carriers N and P induced the transformation of Cu^(2+)to Cu^(+),and the catalytic activity was markedly improved.Under the optimal reaction temperature of 220℃,the gas hourly space velocity(GHSV)of C_(2)H_(2)was 90 h^(-1)and V_(HCl):V_(C_(2)H_(2))was 1.15.The initial activity of the 5%Cu-30 NP/AC catalyst reached 95.59%.Through some characterization methods showed the addition of N and P improved the dispersion of Cu in carbon,which increased the ratio of Cu^+/Cu^(2+).The measurement results confirmed that the chemisorption capacity of mCu-xNP/AC for C_(2)H_(2)decreased slightly,and the chemisorption capacity for HCl increased significantly,which was the reason for the increased activity of the catalyst.The conclusion provides a reference for the development of acetylene hydrochlorination Cu catalyst.展开更多
Hydrodeoxygenation of furfural(FF)into 2-methylfuran(MF)is a significant biomass utilization route.However,designing efficient and stable non-noble metal catalyst is still a huge challenge.Herein,we reported the N,O c...Hydrodeoxygenation of furfural(FF)into 2-methylfuran(MF)is a significant biomass utilization route.However,designing efficient and stable non-noble metal catalyst is still a huge challenge.Herein,we reported the N,O co-doped carbon anchored with Co nanoparticles(Co-SFB)synthesized by employing the organic ligands with the target heteroatoms.Raman,electron paramagnetic resonance(EPR),electrochemical impedance spectroscopy(EIS),and X-ray photoelectron spectroscopy(XPS)characterizations showed that the co-doping of N and O heteroatoms in the carbon support endows Co-SFB with enriched lone pair electrons,fast electron transfer ability,and strong metal-support interaction.These electronic properties resulted in strong FF adsorption as well as lower apparent reaction activation energy.At last,the obtained N,O co-doped Co/C catalyst showed excellent catalytic activity(nearly 100 mol%FF conversion and 94.6 mol%MF yield)and stability for in-situ dehydrogenation of FF into MF.This N,O co-doping strategy for the synthesis of highly efficient catalytic materials with controllable electronic state will provide an excellent opportunity to better understand the structure-function relationship.展开更多
Boron(B)and nitrogen(N)co-doped 3D hierarchical micro/meso porous carbon(BNPC)were successfully fabricated from cellulose nanofiber(CNF)/boron nitride nanosheets(BNNS)/zinc-methylimidazolate framework-8(ZIF-8)nanocomp...Boron(B)and nitrogen(N)co-doped 3D hierarchical micro/meso porous carbon(BNPC)were successfully fabricated from cellulose nanofiber(CNF)/boron nitride nanosheets(BNNS)/zinc-methylimidazolate framework-8(ZIF-8)nanocomposites prepared by 2D BNNS,ZIF-8 nanoparticles,and wheat straw based CNFs.Herein,CNF/ZIF-8 acts as versatile skeleton and imparts partial N dopant into porous carbon structure,while the introduced BNNS can help strengthen the hierarchical porous superstructure and endow abundant B/N co-dopants within BNPC matrix.The obtained BNPC electrode possesses a high specific surface area of 505.4 m2/g,high B/N co-doping content,and desirable hydrophilicity.Supercapacitors assembled with BNPC-2(B/N co-doped porous carbon with a CNF/BNNS mass ratio of 1꞉2)electrodes exhibited exceptional electrochemical performance,demonstrating high capacitance stability even after 5000 charge-discharge cycles.The devices exhibited outstanding energy density and power density,as well as the highest specific capacitance of 433.4 F/g at 1.0 A/g,when compared with other similar reports.This study proposes a facile and sustainable strategy for efficiently fabrication of rich B/N co-doped hierarchical micro/meso porous carbon electrodes from agricultural waste biomass for advanced supercapacitor performance.展开更多
Developing highly efficient and stable platinum-based electrocatalyst for oxygen reduction reaction(ORR) is critical to expediting commercialization of fuel cells.Herein,several PtCu alloy nanocatalysts supported on N...Developing highly efficient and stable platinum-based electrocatalyst for oxygen reduction reaction(ORR) is critical to expediting commercialization of fuel cells.Herein,several PtCu alloy nanocatalysts supported on N,P co-doped carbon(PtCu/NPC) were prepared by microbial-sorption and carbonization-reduction.Among them,PtCu/NPC-700 ℃ exhibits excellent catalytic performance for ORR with a mass activity of 0.895 A mg_(pt)^(-1)(@0.9 V) which is 8.29 folds of commercial Pt/C.Additionally,the ECSA and MA of PtCu/NPC-700℃ only decrease by 14.2% and 18.7% respectively,while Pt/C decreases by 35.2% and 52.8% after 10,000 cycles of ADT test.Moreover,the PtCu/NPC-700℃ catalyst emanates a maximum power density of 715 mW cm^(-2) and only 11.1% loss of maximum power density after 10,000 ADTs in single-cell test,indicating PtCu/NPC-700℃ also manifests higher activity and durability in actual single-cell operation than Pt/C.This research provides an easy and novel strategy for developing highly active and durable Pt-based alloy catalyst.展开更多
基金supported by the National Natural Science Foundation of China(No.52002320,and 51972267)the China Postdoctoral Science Foundation(No.2022M712574)+3 种基金the Science Foundation of Shaanxi Province(2022GD-TSLD-18,No.2023-JCZD-03)Natural Science Foundation of Shaanxi Province(No.2022GY-372,2021GY-153)Industrial Projects Foundation of Ankang Science and Technology Bureau(No.AK2020-GY02-2)the Platform Construction Projects and Technology Service Teams of Ankang University(No.2021AYPT12 and 2022TD07)。
文摘Sodium-ion batteries(SIBs) and hybrid capacitors(SIHCs) have garnered significant attention in energy storage due to their inherent advantages,including high energy density,cost-effectiveness,and enhanced safety.However,developing high-performance anode materials to improve sodium storage performa nce still remains a major challenge.Here,a facile one-pot method has been developed to fabricate a hybrid of MoSeTe nanosheets implanted within the N,F co-doped honeycomb carbon skeleton(MoSeTe/N,F@C).Experimental results demonstrate that the incorporation of large-sized Te atoms into MoSeTe nanosheets enlarges the layer spacing and creates abundant anion vacancies,which effectively facilitate the insertion/extraction of Na^(+) and provide numerous ion adsorption sites for rapid surface capacitive behavior.Additionally,the heteroatoms N,F co-doped honeycomb carbon skeleton with a highly conductive network can restrain the volume expansion and boost reaction kinetics within the electrode.As anticipated,the MoSeTe/N,F@C anode exhibits high reversible capacities along with exceptional cycle stability.When coupled with Na_(3)V_(2)(PO_(4))_(3)@C(NVPF@C) to form SIB full cells,the anode delivers a reversible specific capacity of 126 mA h g^(-1) after 100 cycles at 0.1 A g^(-1).Furthermore,when combined with AC to form SIHC full cells,the anode demonstrates excellent cycling stability with a reversible specific capacity of50 mA h g^(-1) keeping over 3700 cycles at 1.0 A g^(-1).In situ XRD,ex situ TEM characterization,and theoretical calculations(DFT) further confirm the reversibility of sodium storage in MoSeTe/N,F@C anode materials during electrochemical reactions,highlighting their potential for widespread practical application.This work provides new insights into the promising utilization of advanced transition metal dichalcogenides as anode materials for Na^(+)-based energy storage devices.
基金Collaborative Innovation Center of Suzhou Nano Science and TechnologyNational Natural Science Foundation of China,Grant/Award Numbers:21773163,22271203+3 种基金EPSRC for an Overseas Travel Grant,Grant/Award Number:EP/R023816/1State Key Laboratory of Organometallic Chemistry of Shanghai Institute of Organic Chemistry,Grant/Award Number:KF2021005Priority Academic Program Development of Jiangsu Higher Education InstitutionsProject of Scientific and Technologic Infrastructure of Suzhou,Grant/Award Number:SZS201905。
文摘The development of simple and effective strategies to prepare electrocatalysts,which possess unique and stable structures comprised of metal/nonmetallic atoms for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),is currently an urgent issue.Herein,an efficient bifunctional electrocatalyst featured by ultralong N,S-doped carbon nano-hollow-sphere chains about 1300 nm with encapsulated Co nanoparticles(Co-CNHSCs)is developed.The multifunctional catalytic properties of Co together with the heteroatom-induced charge redistribution(i.e.,modulating the electronic structure of the active site)result in superior catalytic activities toward OER and ORR in alkaline media.The optimized catalyst Co-CNHSC-3 displays an outstanding electrocatalytic ability for ORR and OER,a high specific capacity of 1023.6 mAh gZn^(-1),and excellent reversibility after 80 h at 10mA cm^(-2)in a Zn-air battery system.This work presents a new strategy for the design and synthesis of efficient multifunctional carbon-based catalysts for energy storage and conversion devices.
基金supported by the Taishan Scholars Program of Shandong Province(tsqn202103051)the Project of Scientific Research in Shihezi University(CXFZ202205)。
文摘This work aims to solve the problems of low reaction activity of Cu-based catalysts and agglomeration of active centers in acetylene hydrochlorination.Cu-based catalysts supported by NAP co-doped activated carbon(AC)with different content(mCu-xNP/AC)were manufactured and applied in the acetylene hydrochlorination reaction.It was found that the doping of carriers N and P induced the transformation of Cu^(2+)to Cu^(+),and the catalytic activity was markedly improved.Under the optimal reaction temperature of 220℃,the gas hourly space velocity(GHSV)of C_(2)H_(2)was 90 h^(-1)and V_(HCl):V_(C_(2)H_(2))was 1.15.The initial activity of the 5%Cu-30 NP/AC catalyst reached 95.59%.Through some characterization methods showed the addition of N and P improved the dispersion of Cu in carbon,which increased the ratio of Cu^+/Cu^(2+).The measurement results confirmed that the chemisorption capacity of mCu-xNP/AC for C_(2)H_(2)decreased slightly,and the chemisorption capacity for HCl increased significantly,which was the reason for the increased activity of the catalyst.The conclusion provides a reference for the development of acetylene hydrochlorination Cu catalyst.
基金supported by the National Key R&D Program of China(2021YFC2103704)the National Natural Science Foundation of China(22022812,21978259)+1 种基金Key R&D Program of Zhejiang(2022C01208)Institute of Zhejiang University-Quzhou S&T Planed Projects(IZQ2021KJ1001)。
文摘Hydrodeoxygenation of furfural(FF)into 2-methylfuran(MF)is a significant biomass utilization route.However,designing efficient and stable non-noble metal catalyst is still a huge challenge.Herein,we reported the N,O co-doped carbon anchored with Co nanoparticles(Co-SFB)synthesized by employing the organic ligands with the target heteroatoms.Raman,electron paramagnetic resonance(EPR),electrochemical impedance spectroscopy(EIS),and X-ray photoelectron spectroscopy(XPS)characterizations showed that the co-doping of N and O heteroatoms in the carbon support endows Co-SFB with enriched lone pair electrons,fast electron transfer ability,and strong metal-support interaction.These electronic properties resulted in strong FF adsorption as well as lower apparent reaction activation energy.At last,the obtained N,O co-doped Co/C catalyst showed excellent catalytic activity(nearly 100 mol%FF conversion and 94.6 mol%MF yield)and stability for in-situ dehydrogenation of FF into MF.This N,O co-doping strategy for the synthesis of highly efficient catalytic materials with controllable electronic state will provide an excellent opportunity to better understand the structure-function relationship.
基金support from the Natural Science Foundation of China (No.32101470)Foundation of Tianjin Key Laboratory of Pulp&Paper of Tianjin University of Science&Technology (No.202003,No.202106)+3 种基金China Postdoctoral Science Foundation (No.2022M712379,No.2021M692401)National Key Research and Development Plan (No.2022YFC2900031)Foundation of Guangxi Key Laboratory of Clean Pulp&Papermaking and Pollution Control,College of Light Industry and Food Engineering,Guangxi University (No.2021KF37)the support from Zhejiang Jingxing Paper Co.Ltd.,and University of New Brunswick.
文摘Boron(B)and nitrogen(N)co-doped 3D hierarchical micro/meso porous carbon(BNPC)were successfully fabricated from cellulose nanofiber(CNF)/boron nitride nanosheets(BNNS)/zinc-methylimidazolate framework-8(ZIF-8)nanocomposites prepared by 2D BNNS,ZIF-8 nanoparticles,and wheat straw based CNFs.Herein,CNF/ZIF-8 acts as versatile skeleton and imparts partial N dopant into porous carbon structure,while the introduced BNNS can help strengthen the hierarchical porous superstructure and endow abundant B/N co-dopants within BNPC matrix.The obtained BNPC electrode possesses a high specific surface area of 505.4 m2/g,high B/N co-doping content,and desirable hydrophilicity.Supercapacitors assembled with BNPC-2(B/N co-doped porous carbon with a CNF/BNNS mass ratio of 1꞉2)electrodes exhibited exceptional electrochemical performance,demonstrating high capacitance stability even after 5000 charge-discharge cycles.The devices exhibited outstanding energy density and power density,as well as the highest specific capacitance of 433.4 F/g at 1.0 A/g,when compared with other similar reports.This study proposes a facile and sustainable strategy for efficiently fabrication of rich B/N co-doped hierarchical micro/meso porous carbon electrodes from agricultural waste biomass for advanced supercapacitor performance.
基金supported by funding from the National Natural Science Foundation of China (12074435 and 52001335)the Science and Technology Innovation Program of Hunan Province (2021RC4001)the Natural Science Foundation of Yunnan Province (202201AT070259)。
文摘Developing highly efficient and stable platinum-based electrocatalyst for oxygen reduction reaction(ORR) is critical to expediting commercialization of fuel cells.Herein,several PtCu alloy nanocatalysts supported on N,P co-doped carbon(PtCu/NPC) were prepared by microbial-sorption and carbonization-reduction.Among them,PtCu/NPC-700 ℃ exhibits excellent catalytic performance for ORR with a mass activity of 0.895 A mg_(pt)^(-1)(@0.9 V) which is 8.29 folds of commercial Pt/C.Additionally,the ECSA and MA of PtCu/NPC-700℃ only decrease by 14.2% and 18.7% respectively,while Pt/C decreases by 35.2% and 52.8% after 10,000 cycles of ADT test.Moreover,the PtCu/NPC-700℃ catalyst emanates a maximum power density of 715 mW cm^(-2) and only 11.1% loss of maximum power density after 10,000 ADTs in single-cell test,indicating PtCu/NPC-700℃ also manifests higher activity and durability in actual single-cell operation than Pt/C.This research provides an easy and novel strategy for developing highly active and durable Pt-based alloy catalyst.
文摘目的分析体质量指数(Body mass index,BMI)与老年慢性心力衰竭(Chronic heart failure,CHF)患者血浆胱抑素C(cystatinC,Cys-C)、N末端B型利钠肽原(N-terminal pro-B-type natriuretic peptide,NT-proBNP)水平相关性,并分析血浆Cys-C、NT-proBNP评估老年CHF患者预后价值。方法选择2021年7月—2022年10月在本院接受治疗的192例老年慢性心力衰竭(CHF)患者作为研究对象,按照BMI指数分为肥胖组(49例)、超重组(68例)和正常组(75例)三组。对比各亚组患者血浆Cys-C、NT-proBNP水平差异,采用Pearson相关性分析的方式探究老年CHF患者BMI指数与血浆Cys-C、NT-proBNP相关性,对入组患者实施12个月随访,将患者按照预后情况区分为死亡组和存活组,对比两亚组患者血浆Cys-C、NT-proBNP水平差异并评估预后评估价值。结果肥胖组患者血浆Cys-C、NT-proBNP水平高于超重组,超重组患者血浆Cys-C、NT-proBNP水平高于正常组,差异具有统计学意义(P<0.05);入组老年CHF患者的BMI指数与其血浆Cys-C、NT-proBN水平均呈现明显的正相关性(r=0.7104,P<0.0001)(r=0.6603,P<0.0001);随访12个月显示,死亡组患者的血浆Cys-C、NT-proBNP水平显著高于存活组患者,差异具有统计学意义(P<0.05);血浆Cys-C、NT-proBNP对老年CHF预后评估曲线下面积(area under curv,AUC)为0.6930(P=0.0009)、0.7982(P<0.0001)。结论老年CHF患者随BMI指数升高,血浆Cys-C、NT-proBNP水平逐渐升高,血浆Cys-C、NT-proBNP对老年CHF临床结局具有一定的预测价值,进一步研究有推广应用于老年CHF预后评估潜力。