A preparation technology of MgO powder used in special silicon steel from hydromagnesite mineral has been developed. The preparation technology includes the following steps: (1) calcining the hydromagnesite at 700-...A preparation technology of MgO powder used in special silicon steel from hydromagnesite mineral has been developed. The preparation technology includes the following steps: (1) calcining the hydromagnesite at 700-750°C for 1.5-2 h; (2) hydrating the calcined hydromagnesite to be slurry containing the solid-liquid ratio of 15-20 g?L?1; (3) acquiring Mg(HCO3)2 solution by carbonating the slurry, the carbonation temperature, CO2 pressure, and end point PH value of carbonation are less than 40°C, 0.4-0.6 MPa, and 7 respectively during the carbonation process; (4) preparing precipitated basic magnesium carbonate by thermally decomposing the Mg(HCO3)2 solution at 90-100°C; (5) obtaining the MgO product by calcining the precipitated basic magnesium carbonate at 850-950°C for 30-60 min, and adopting flowing nitrogen during the cooling process. By using this technology, more than 80wt% magnesium in hydromagnesite mineral can be extracted, and high-performance MgO products used in special silicon steel can be ob- tained.展开更多
Blocking rockfalls directly by reinforced concrete(RC) flat sheds with thick sand cushions is an outdated method. Such conventional sheds typically accumulate rock heavily, and become progressively damaged and are dif...Blocking rockfalls directly by reinforced concrete(RC) flat sheds with thick sand cushions is an outdated method. Such conventional sheds typically accumulate rock heavily, and become progressively damaged and are difficult to repair, and are very costly. To address these problems, we propose a new structure called a Graded Dissipating Inclined Steel Rock(GDISR) shed that utilizes the graded energy dissipation method. Here, we study the dynamic response of the GDISR shed with model test and numerical simulation, and give its optimization design combining with a practical engineering case. Our results show that the optimized modular E-block and corrugated steel tube can deform to sufficiently absorb the energy of different impact intensities. This efficiently and economically provides GDISR sheds with two security lines. Compared with conventional RC sheds, GDISR sheds with optimal incline have a more efficient anti-impact function, are faster and easier to repair, and are much simpler and cheaper to build.展开更多
This paper presents isothermal uniaxial compression test results of M300 grade maraging steel over a wide range of temperatures(900 e1200℃) and strain rates(0.001 e100 s^(-1)) to examine hot deformability and concurr...This paper presents isothermal uniaxial compression test results of M300 grade maraging steel over a wide range of temperatures(900 e1200℃) and strain rates(0.001 e100 s^(-1)) to examine hot deformability and concurrent microstructural evolution. Processing map is generated and indicated the optimum processing parameters in the temperature range of 1125℃-1200℃ and strain rate range of 0.001 e0.1 s^(-1). High values of the efficiency of power dissipation, microstructural observations and EBSD results indicate softening mechanism to be the occurrence of dynamic recrystallisation. Material constants in a constitutive relation are evaluated from the flow stress data useful in computer modelling.展开更多
Aluminum/steel electric transition joints (ETJs) are used in aluminum reduction cell for the purpose of welding aluminum rod and steel bracket components. Solid state welding process used for joining aluminum and stee...Aluminum/steel electric transition joints (ETJs) are used in aluminum reduction cell for the purpose of welding aluminum rod and steel bracket components. Solid state welding process used for joining aluminum and steel at the electric transition joints have the drawbacks of cracking and separation at the interface surfaces. Cracking and separation at the electric transition joints are caused by the stress singularities that developed due to the mismatch in thermal and mechanical properties of each material. To overcome the drawback of electric transition joints, aluminum/steel functionally graded may be used as electric transition joints or proposed. Therefore manufacturing and investigation of aluminum/steel functionally graded materials fabricated by powder metallurgy process were carried out through the current work. Different samples with different layers of aluminum/steel functionally graded materials were compacted using steel die and punch at the same compacted pressure and sintered temperature. After investigating the different samples of aluminum/steel functionally graded materials under different fabrication conditions, the suitable fabrication regime was determined with the aid of microscopic observations.展开更多
In this paper, an experimental and analytical study of two half-scale steel X-braced flames with equal nominal shear strength under cyclic loading is described. In these tests, all members except the braces are simila...In this paper, an experimental and analytical study of two half-scale steel X-braced flames with equal nominal shear strength under cyclic loading is described. In these tests, all members except the braces are similar. The braces are made of various steel grades to monitor the effects of seismic excitation. Internal stiffeners are employed to limit the local buckling and increase the fracture life of the steel bracing. A heavy central core is introduced at the intersection of the braces to decrease their effective length. Recent seismic specifications are considered in the design of the X-braced frame members to verify their efficiency. The failure modes of the X-braced frames are also illustrated. It is observed that the energy dissipation capacity, ultimate load capacity and ductility of the system increase considerably by using lower grade steel and proposed detailing. Analytical modeling of the specimens using nonlinear finite element software supports the experimental findings.展开更多
This study was conducted to understand the relationship between various critical temperatures and the stability of the secondary phases inside the heat-affected-zone(HAZ)of welded Grade 91(Gr.91)steel parts.Type IV cr...This study was conducted to understand the relationship between various critical temperatures and the stability of the secondary phases inside the heat-affected-zone(HAZ)of welded Grade 91(Gr.91)steel parts.Type IV cracking has been observed in the HAZ,and it is widely accepted that the stabilities of the secondary phases in Gr.91 steel are critical to the creep resistance,which is related to the crack failure of this steel.In this work,the stabilities of the secondary phases,including those of the M23C6,MX,and Z phases,were simulated by computational thermodynamics.Equilibrium cooling and Scheil simulations were carried out in order to understand the phase stability in welded Gr.91 steel.The effect of four critical temperatures—that is,Acl(the threshold temperature at which austenite begins to form),Ac3(the threshold temperature at which ferrite is fully transformed into austenite),and the M23C6 and Z phase threshold temperatures—on the thickness of the HAZ and phase stability in the HAZ is discussed.Overall,the simulations presented in this paper explain the mechanisms that can affect the creep resistance of Gr.91 steel,and can offer a possible solution to the problem of how to increase creep resistance at elevated temperatures by optimizing the steel composition,welding,and heat treatment process parameters.The simulation results from this work provide guidance for future alloy development to improve creep resistance in order to prevent type IV cracking.展开更多
The development, production and application of top high-grade non-grain-oriented (NGO) silicon steels at Baosteel were introduced in this paper. Top high grades refer to the highest grades in the intemational silico...The development, production and application of top high-grade non-grain-oriented (NGO) silicon steels at Baosteel were introduced in this paper. Top high grades refer to the highest grades in the intemational silicon steel product standard and above. B35A230 and B50A250 were developed at Baosteel in 2009 and have been used in inverter compressors for air-conditioners, small transformers and big hydropower generators in the Three Gorges project. Small- batch production of B35A210 and B50A230, which exceed the highest grades listed in the intemational silicon steel product standard,began in 2010. That was a breakthrough in the silicon steel making history in China. Presently,Baosteel' s high- grade NGO products have passed the strict qualifications of the three major electric power equipment manufacturers in China and the leading international power equipment suppliers like ALSTOM, GE, SIEMENS, VESTAS, etc. These products are characterized by low iron loss, low anisotropy, good punchability and a high lamination factor. They have been used in the 770 MW hydropower generator at Xiluodu Power Station in the three gorges area, 1 000 MW thermal power generators and 2.5 MW wind power generators.展开更多
The bogie made of Grade B+ steel is one of the most important parts of heavy haul trains. Some accidents were found to be the result of fracture failure of the bogies. It is very important to find the reason why the ...The bogie made of Grade B+ steel is one of the most important parts of heavy haul trains. Some accidents were found to be the result of fracture failure of the bogies. It is very important to find the reason why the fracture failure occurred. Because AI was added for the final deoxidation during the smelting process of the Grade B+Steel, residual AI existed to some extent in the castings. High residual AI content in the bogie casting was presumed to be the reason for the fracture. In this work, the influence of residual AI content in the range of 0.015wt.% to 0.3wt.% on the microstructure and mechanical properties of the Grade B+ Steel was studied. The experimental results showed that when the residual AI content is between 0.02wt.% and 0.20wt.%, the mechanical properties of the steel meet the requirements of technical specification for heavy haul train parts, and the fracture is typical plastic fractures. If the residual AI content is less than 0.02wt.%, the microstructures are coarse, and the mechanical properties can not meet the demand of bogie steel castings. When the residual AI content is more than 0.2wt.%, the elongation, reduction of area, and low-temperature impact energy markedly deteriorate. The fracture mode then changes from plastic fracture to cleavage brittle fracture. Therefore, the amount of AI addition for the final deoxidation during the smelting process must be strictly controlled. The optimum addition amount needs to be controlled within the range of 0.02wt.% to 0.20wt.% for the Grade B+Steel.展开更多
Maraging steels have excellent combination of strength and toughness and are extensively used for a variety of aerospace applications. In one such critical application, this steel was used to fabricate shear screws of...Maraging steels have excellent combination of strength and toughness and are extensively used for a variety of aerospace applications. In one such critical application, this steel was used to fabricate shear screws of a stage separation system in a satellite launch vehicle. During assembly preparations, one of the shear screws which connected the separation band and band end block has failed at the first thread. Microstructural analysis revealed that the crack originated from the root of the thread and propagated in an intergranular mode. The failure is attributed to combined effect of stress and corrosion leading to stress corrosion cracking.展开更多
Austenitic stainless steel(ASS) and High nickel steel(HNS) welding consumables are being used for welding Q&T steels, as they have higher solubility for hydrogen in austenitic phase, to avoid hydrogen induced crac...Austenitic stainless steel(ASS) and High nickel steel(HNS) welding consumables are being used for welding Q&T steels, as they have higher solubility for hydrogen in austenitic phase, to avoid hydrogen induced cracking(HIC) but they are very expensive. In recent years, the developments of low hydrogen ferritic steel(LHF) consumables that contain no hygroscopic compounds are utilized for welding Q&T steels. Heat affected zone(HAZ) softening is another critical issue during welding of armour grade Q&T steels and it depends on the welding process employed and the weld thermal cycle. In this investigation an attempt has been made to study the influence of welding consumables and welding processes on metallurgical characteristics of armour grade Q&T steel joints by various metallurgical characterization procedures. Shielded metal arc welding(SMAW) and flux cored arc welding(FCAW) processes were used for making welds using ASS, LHF and HNS welding consumables. The joints fabricated by using LHF consumables offered lower degree of HAZ softening and there is no evidence of HIC in the joints fabricated using LHF consumables.展开更多
This paper briefly summarized the development history, product catalogue and magnetic properties of non- oriented electrical steel sheets at Baosteel, as well as the development and application of high-value-added ste...This paper briefly summarized the development history, product catalogue and magnetic properties of non- oriented electrical steel sheets at Baosteel, as well as the development and application of high-value-added steel grades. Recent advances in manufacturing electrical steel sheets were also introduced, including technologies for controlling inclusion,for producing high-grade steel strips by a tandem rolling mill and for controlling the transverse thickness difference of steel sheets, and the development of environmentally friendly coatings.展开更多
X65, X70, and X80 belong to high grade pipeline steels. Toughness is one of the most important properties of pipeline steels when the pipeline transports the gas or oil, and the means to control toughness is very impo...X65, X70, and X80 belong to high grade pipeline steels. Toughness is one of the most important properties of pipeline steels when the pipeline transports the gas or oil, and the means to control toughness is very important for exploring even higher grade pipeline steels. We established the relationship between toughness and crystallographic parameters of high grade pipeline steels by studying the crystallographic parameters of X65, X70, and X80 using EBSD and analyzing Charpy CVN of X65, X70 and X80. The results show that the effective grain size, the frequency distribution of grain boundary misorientation and the ratio of high angle grain boundary to small angle grain boundary are important parameters. The finer the effective grain size, and the higher the frequency distribution of grain boundaries (〉 50~), the more excellent toughness of high grade pipeline steels will be.展开更多
基金the Science and Technology Program Project of Hunan Province, China (No.06SK2011).
文摘A preparation technology of MgO powder used in special silicon steel from hydromagnesite mineral has been developed. The preparation technology includes the following steps: (1) calcining the hydromagnesite at 700-750°C for 1.5-2 h; (2) hydrating the calcined hydromagnesite to be slurry containing the solid-liquid ratio of 15-20 g?L?1; (3) acquiring Mg(HCO3)2 solution by carbonating the slurry, the carbonation temperature, CO2 pressure, and end point PH value of carbonation are less than 40°C, 0.4-0.6 MPa, and 7 respectively during the carbonation process; (4) preparing precipitated basic magnesium carbonate by thermally decomposing the Mg(HCO3)2 solution at 90-100°C; (5) obtaining the MgO product by calcining the precipitated basic magnesium carbonate at 850-950°C for 30-60 min, and adopting flowing nitrogen during the cooling process. By using this technology, more than 80wt% magnesium in hydromagnesite mineral can be extracted, and high-performance MgO products used in special silicon steel can be ob- tained.
基金supported by the National Key Basic Research Program of China(2016YFB0201003)the National Natural Science Foundation of China(41672356)the 135 Strategic Program of the Institute of Mountain Hazards and Environment,CAS(SDS-135-1704)
文摘Blocking rockfalls directly by reinforced concrete(RC) flat sheds with thick sand cushions is an outdated method. Such conventional sheds typically accumulate rock heavily, and become progressively damaged and are difficult to repair, and are very costly. To address these problems, we propose a new structure called a Graded Dissipating Inclined Steel Rock(GDISR) shed that utilizes the graded energy dissipation method. Here, we study the dynamic response of the GDISR shed with model test and numerical simulation, and give its optimization design combining with a practical engineering case. Our results show that the optimized modular E-block and corrugated steel tube can deform to sufficiently absorb the energy of different impact intensities. This efficiently and economically provides GDISR sheds with two security lines. Compared with conventional RC sheds, GDISR sheds with optimal incline have a more efficient anti-impact function, are faster and easier to repair, and are much simpler and cheaper to build.
文摘This paper presents isothermal uniaxial compression test results of M300 grade maraging steel over a wide range of temperatures(900 e1200℃) and strain rates(0.001 e100 s^(-1)) to examine hot deformability and concurrent microstructural evolution. Processing map is generated and indicated the optimum processing parameters in the temperature range of 1125℃-1200℃ and strain rate range of 0.001 e0.1 s^(-1). High values of the efficiency of power dissipation, microstructural observations and EBSD results indicate softening mechanism to be the occurrence of dynamic recrystallisation. Material constants in a constitutive relation are evaluated from the flow stress data useful in computer modelling.
文摘Aluminum/steel electric transition joints (ETJs) are used in aluminum reduction cell for the purpose of welding aluminum rod and steel bracket components. Solid state welding process used for joining aluminum and steel at the electric transition joints have the drawbacks of cracking and separation at the interface surfaces. Cracking and separation at the electric transition joints are caused by the stress singularities that developed due to the mismatch in thermal and mechanical properties of each material. To overcome the drawback of electric transition joints, aluminum/steel functionally graded may be used as electric transition joints or proposed. Therefore manufacturing and investigation of aluminum/steel functionally graded materials fabricated by powder metallurgy process were carried out through the current work. Different samples with different layers of aluminum/steel functionally graded materials were compacted using steel die and punch at the same compacted pressure and sintered temperature. After investigating the different samples of aluminum/steel functionally graded materials under different fabrication conditions, the suitable fabrication regime was determined with the aid of microscopic observations.
文摘In this paper, an experimental and analytical study of two half-scale steel X-braced flames with equal nominal shear strength under cyclic loading is described. In these tests, all members except the braces are similar. The braces are made of various steel grades to monitor the effects of seismic excitation. Internal stiffeners are employed to limit the local buckling and increase the fracture life of the steel bracing. A heavy central core is introduced at the intersection of the braces to decrease their effective length. Recent seismic specifications are considered in the design of the X-braced frame members to verify their efficiency. The failure modes of the X-braced frames are also illustrated. It is observed that the energy dissipation capacity, ultimate load capacity and ductility of the system increase considerably by using lower grade steel and proposed detailing. Analytical modeling of the specimens using nonlinear finite element software supports the experimental findings.
基金This material is based upon work supported by the US Department of Energy(DOE)(DE-FE0027800).The authors would like to thank the DOE National Energy Technology Laboratory program managers,Dr.Karol Schrems and Dr.Jessica Mullen,and Dr.Wei Zhang from Ohio State University,for their support and guidance.
文摘This study was conducted to understand the relationship between various critical temperatures and the stability of the secondary phases inside the heat-affected-zone(HAZ)of welded Grade 91(Gr.91)steel parts.Type IV cracking has been observed in the HAZ,and it is widely accepted that the stabilities of the secondary phases in Gr.91 steel are critical to the creep resistance,which is related to the crack failure of this steel.In this work,the stabilities of the secondary phases,including those of the M23C6,MX,and Z phases,were simulated by computational thermodynamics.Equilibrium cooling and Scheil simulations were carried out in order to understand the phase stability in welded Gr.91 steel.The effect of four critical temperatures—that is,Acl(the threshold temperature at which austenite begins to form),Ac3(the threshold temperature at which ferrite is fully transformed into austenite),and the M23C6 and Z phase threshold temperatures—on the thickness of the HAZ and phase stability in the HAZ is discussed.Overall,the simulations presented in this paper explain the mechanisms that can affect the creep resistance of Gr.91 steel,and can offer a possible solution to the problem of how to increase creep resistance at elevated temperatures by optimizing the steel composition,welding,and heat treatment process parameters.The simulation results from this work provide guidance for future alloy development to improve creep resistance in order to prevent type IV cracking.
文摘The development, production and application of top high-grade non-grain-oriented (NGO) silicon steels at Baosteel were introduced in this paper. Top high grades refer to the highest grades in the intemational silicon steel product standard and above. B35A230 and B50A250 were developed at Baosteel in 2009 and have been used in inverter compressors for air-conditioners, small transformers and big hydropower generators in the Three Gorges project. Small- batch production of B35A210 and B50A230, which exceed the highest grades listed in the intemational silicon steel product standard,began in 2010. That was a breakthrough in the silicon steel making history in China. Presently,Baosteel' s high- grade NGO products have passed the strict qualifications of the three major electric power equipment manufacturers in China and the leading international power equipment suppliers like ALSTOM, GE, SIEMENS, VESTAS, etc. These products are characterized by low iron loss, low anisotropy, good punchability and a high lamination factor. They have been used in the 770 MW hydropower generator at Xiluodu Power Station in the three gorges area, 1 000 MW thermal power generators and 2.5 MW wind power generators.
基金financially supported by the Heilongjiang Province Natural Science Foundation(QC2010110)
文摘The bogie made of Grade B+ steel is one of the most important parts of heavy haul trains. Some accidents were found to be the result of fracture failure of the bogies. It is very important to find the reason why the fracture failure occurred. Because AI was added for the final deoxidation during the smelting process of the Grade B+Steel, residual AI existed to some extent in the castings. High residual AI content in the bogie casting was presumed to be the reason for the fracture. In this work, the influence of residual AI content in the range of 0.015wt.% to 0.3wt.% on the microstructure and mechanical properties of the Grade B+ Steel was studied. The experimental results showed that when the residual AI content is between 0.02wt.% and 0.20wt.%, the mechanical properties of the steel meet the requirements of technical specification for heavy haul train parts, and the fracture is typical plastic fractures. If the residual AI content is less than 0.02wt.%, the microstructures are coarse, and the mechanical properties can not meet the demand of bogie steel castings. When the residual AI content is more than 0.2wt.%, the elongation, reduction of area, and low-temperature impact energy markedly deteriorate. The fracture mode then changes from plastic fracture to cleavage brittle fracture. Therefore, the amount of AI addition for the final deoxidation during the smelting process must be strictly controlled. The optimum addition amount needs to be controlled within the range of 0.02wt.% to 0.20wt.% for the Grade B+Steel.
文摘Maraging steels have excellent combination of strength and toughness and are extensively used for a variety of aerospace applications. In one such critical application, this steel was used to fabricate shear screws of a stage separation system in a satellite launch vehicle. During assembly preparations, one of the shear screws which connected the separation band and band end block has failed at the first thread. Microstructural analysis revealed that the crack originated from the root of the thread and propagated in an intergranular mode. The failure is attributed to combined effect of stress and corrosion leading to stress corrosion cracking.
基金Armament Research Board (ARMREB), New Delhi for funding this project work (Project no. MAA/03/ 41)
文摘Austenitic stainless steel(ASS) and High nickel steel(HNS) welding consumables are being used for welding Q&T steels, as they have higher solubility for hydrogen in austenitic phase, to avoid hydrogen induced cracking(HIC) but they are very expensive. In recent years, the developments of low hydrogen ferritic steel(LHF) consumables that contain no hygroscopic compounds are utilized for welding Q&T steels. Heat affected zone(HAZ) softening is another critical issue during welding of armour grade Q&T steels and it depends on the welding process employed and the weld thermal cycle. In this investigation an attempt has been made to study the influence of welding consumables and welding processes on metallurgical characteristics of armour grade Q&T steel joints by various metallurgical characterization procedures. Shielded metal arc welding(SMAW) and flux cored arc welding(FCAW) processes were used for making welds using ASS, LHF and HNS welding consumables. The joints fabricated by using LHF consumables offered lower degree of HAZ softening and there is no evidence of HIC in the joints fabricated using LHF consumables.
文摘This paper briefly summarized the development history, product catalogue and magnetic properties of non- oriented electrical steel sheets at Baosteel, as well as the development and application of high-value-added steel grades. Recent advances in manufacturing electrical steel sheets were also introduced, including technologies for controlling inclusion,for producing high-grade steel strips by a tandem rolling mill and for controlling the transverse thickness difference of steel sheets, and the development of environmentally friendly coatings.
基金Funded by China Postdoctoral Science Foundation(No.20060390319)
文摘X65, X70, and X80 belong to high grade pipeline steels. Toughness is one of the most important properties of pipeline steels when the pipeline transports the gas or oil, and the means to control toughness is very important for exploring even higher grade pipeline steels. We established the relationship between toughness and crystallographic parameters of high grade pipeline steels by studying the crystallographic parameters of X65, X70, and X80 using EBSD and analyzing Charpy CVN of X65, X70 and X80. The results show that the effective grain size, the frequency distribution of grain boundary misorientation and the ratio of high angle grain boundary to small angle grain boundary are important parameters. The finer the effective grain size, and the higher the frequency distribution of grain boundaries (〉 50~), the more excellent toughness of high grade pipeline steels will be.