A new method——the third power B-spline function method is developed to analyse the stability and the buckle of rolled strip under residual stress.The large deflection theory of thin plate is used to calculate the bu...A new method——the third power B-spline function method is developed to analyse the stability and the buckle of rolled strip under residual stress.The large deflection theory of thin plate is used to calculate the buckle of rolled strip and criterion of critical buckle is given.The computed results tally with those of experiment well,which provides theoretical basis and method for developing the mathematical model of flatness control.展开更多
This paper describes an approximating solution, based on Lagrange interpolation and spline functions, to treat functional integral equations of Fredholm type and Volterra type. This method extended to functional integ...This paper describes an approximating solution, based on Lagrange interpolation and spline functions, to treat functional integral equations of Fredholm type and Volterra type. This method extended to functional integral and integro-differential equations. For showing efficiency of the method we give some numerical examples.展开更多
The following article has been retracted due to the investigation of complaints received against it. The Editorial Board found that substantial portions of the text came from other published papers. The scientific com...The following article has been retracted due to the investigation of complaints received against it. The Editorial Board found that substantial portions of the text came from other published papers. The scientific community takes a very strong view on this matter, and the Health treats all unethical behavior such as plagiarism seriously. This paper published in Vol.3 No. 4, 334-339, 2012, has been removed from this site.展开更多
In the present paper,a new criterion is derived to obtain the optimum fitting curve while using Cubic B-spline basis functions to remove the statistical noise in the spectroscopic data.In this criterion,firstly,smooth...In the present paper,a new criterion is derived to obtain the optimum fitting curve while using Cubic B-spline basis functions to remove the statistical noise in the spectroscopic data.In this criterion,firstly,smoothed fitting curves using Cubic B-spline basis functions are selected with the increasing knot number.Then,the best fitting curves are selected according to the value of the minimum residual sum of squares(RSS)of two adjacent fitting curves.In the case of more than one best fitting curves,the authors use Reinsch's first condition to find a better one.The minimum residual sum of squares(RSS)of fitting curve with noisy data is not recommended as the criterion to determine the best fitting curve,because this value decreases to zero as the number of selected channels increases and the minimum value gives no smoothing effect.Compared with Reinsch's method,the derived criterion is simple and enables the smoothing conditions to be determined automatically without any initial input parameter.With the derived criterion,the satisfactory result was obtained for the experimental spectroscopic data to remove the statistical noise using Cubic B-spline basis functions.展开更多
Modelling and simulation of projectile flight is at the core of ballistic computer software and is essential to the study of performance of rifles and projectiles in various engagement conditions.An effective and repr...Modelling and simulation of projectile flight is at the core of ballistic computer software and is essential to the study of performance of rifles and projectiles in various engagement conditions.An effective and representative numerical model of projectile flight requires a relatively good approximation of the aerodynamics.The aerodynamic coefficients of the projectile model should be described as a series of piecewise polynomial functions of the Mach number that ideally meet the following conditions:they are continuous,differentiable at least once,and have a relatively low degree.The paper provides the steps needed to generate such piecewise polynomial functions using readily available tools,and then compares Piecewise Cubic Hermite Interpolating Polynomial(PCHIP),cubic splines,and piecewise linear functions,and their variant,as potential curve fitting methods to approximate the aerodynamics of a generic small arms projectile.A key contribution of the paper is the application of PCHIP to the approximation of projectile aerodynamics,and its evaluation against a set of criteria.Finally,the paper provides a baseline assessment of the impact of the polynomial functions on flight trajectory predictions obtained with 6-degree-of-freedom simulations of a generic projectile.展开更多
Based on the definition of MQ-B-Splines,this article constructs five types of univariate quasi-interpolants to non-uniformly distributed data. The error estimates and the shape-preserving properties are shown in detai...Based on the definition of MQ-B-Splines,this article constructs five types of univariate quasi-interpolants to non-uniformly distributed data. The error estimates and the shape-preserving properties are shown in details.And examples are shown to demonstrate the capacity of the quasi-interpolants for curve representation.展开更多
The main goal of this work is to develop an effective technique for solving nonlinear systems of Volterra integral equations. The main tools are the cardinal spline functions on small compact supports. We solve a syst...The main goal of this work is to develop an effective technique for solving nonlinear systems of Volterra integral equations. The main tools are the cardinal spline functions on small compact supports. We solve a system of algebra equations to approximate the solution of the system of integral equations. Since the matrix for the algebraic system is nearly triangular, It is relatively painless to solve for the unknowns and an approximation of the original solution with high precision is accomplished. In order to enhance the accuracy, several cardinal splines are employed in the paper. Our schemes were compared with other techniques proposed in recent papers and the advantage of our method was exhibited with several numerical examples.展开更多
In this article, we develop numerical method by constructing ninth degree spline function using extended cubic spline Bickley’s method to find the approximate solution of seventh order linear boundary value problems ...In this article, we develop numerical method by constructing ninth degree spline function using extended cubic spline Bickley’s method to find the approximate solution of seventh order linear boundary value problems at different step lengths. The approximate solution is compared with the solution obtained by eighth degree splines and exact solution. It has been observed that the approximate solution is an excellent agreement with exact solution. Low absolute error indicates that our numerical method is effective for solving high order linear boundary value problems.展开更多
In this paper,we give four characteristic theorems of the natural Tchebysheff splint functionassociated with multiple knots.These theorems possess specific form,that arc convenient forapplicaton;In the case of with si...In this paper,we give four characteristic theorems of the natural Tchebysheff splint functionassociated with multiple knots.These theorems possess specific form,that arc convenient forapplicaton;In the case of with simple knots or polynomial splint,the corollaries of this paper’s the-orems give corresponding results.展开更多
The paper introduces a method to get three-dimensional reproduction of log shape by adopting Spline Function in fitting the curve of the finite log data. The method has ad-vantages of higher accuracy, less acquired da...The paper introduces a method to get three-dimensional reproduction of log shape by adopting Spline Function in fitting the curve of the finite log data. The method has ad-vantages of higher accuracy, less acquired data, easier to use, etc. Making use of high-precision drawing function of computer, the graphs of log geometric shape in different visual angles can be achieved easily with this method. It also provided a firm foundation for the determination of optimum saw cutting scheme.展开更多
Approximation theory experienced a long term history. Since 50’ last century, the rise of spline function as well as the advance of calculation promotes the growth of classical approximation theory and makes them dev...Approximation theory experienced a long term history. Since 50’ last century, the rise of spline function as well as the advance of calculation promotes the growth of classical approximation theory and makes them develop a profound theory in maths, and application values have shown among the field of scientific calculation and engineering technology and etc. At present, the study of spline function had made a great progress and had a lot of fruits, as for that, the reader could look up the book [1] or [2]. Nevertheless, the research staff pays less attention to exponential spline function, since polynomial spline function is a special case of that, so it is much essential and meaningful for one to explore the nature of exponential spline function.展开更多
In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubi...In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubic spline numerical model(Spline Model for short),which is with a quasi-Lagrangian time-split integration scheme of fitting cubic spline/bicubic surface to all physical variable fields in the atmospheric equations on spherical discrete latitude-longitude mesh.A new algorithm of"fitting cubic spline—time step integration—fitting cubic spline—……"is developed to determine their first-and2nd-order derivatives and their upstream points for time discrete integral to the governing equations in Spline Model.And the cubic spline function and its mathematical polarities are also discussed to understand the Spline Model’s mathematical foundation of numerical analysis.It is pointed out that the Spline Model has mathematical laws of"convergence"of the cubic spline functions contracting to the original functions as well as its 1st-order and 2nd-order derivatives.The"optimality"of the 2nd-order derivative of the cubic spline functions is optimal approximation to that of the original functions.In addition,a Hermite bicubic patch is equivalent to operate on a grid for a 2nd-order derivative variable field.Besides,the slopes and curvatures of a central difference are identified respectively,with a smoothing coefficient of 1/3,three-point smoothing of that of a cubic spline.Then the slopes and curvatures of a central difference are calculated from the smoothing coefficient 1/3 and three-point smoothing of that of a cubic spline,respectively.Furthermore,a global simulation case of adiabatic,non-frictional and"incompressible"model atmosphere is shown with the quasi-Lagrangian time integration by using a global Spline Model,whose initial condition comes from the NCEP reanalysis data,along with quasi-uniform latitude-longitude grids and the so-called"shallow atmosphere"Navier-Stokes primitive equations in the spherical coordinates.The Spline Model,which adopted the Navier-Stokes primitive equations and quasi-Lagrangian time-split integration scheme,provides an initial ideal case of global atmospheric circulation.In addition,considering the essentially non-linear atmospheric motions,the Spline Model could judge reasonably well simple points of any smoothed variable field according to its fitting spline curvatures that must conform to its physical interpretation.展开更多
This paper presents a class of Cn- continuous B- type spline curves with some paramet- ric factors.The length of their local support is equal to4.Taking the different values of the parametric factors,the curves can ...This paper presents a class of Cn- continuous B- type spline curves with some paramet- ric factors.The length of their local support is equal to4.Taking the different values of the parametric factors,the curves can become free- type curves or interpolate a set of given points even mix the both cases.When the parametric factors satisfy the certain conditions,the degrees of the curves can be decreased as low as possible.Besides,when all the parametric factors tend to zero,the curves globally approximate to the control polygon.展开更多
The aim of this paper is to approximate the solution of system of fractional delay differential equations. Our technique relies on the use of suitable spline functions of polynomial form. We introduce the description ...The aim of this paper is to approximate the solution of system of fractional delay differential equations. Our technique relies on the use of suitable spline functions of polynomial form. We introduce the description of the proposed approximation method. The error analysis and stability of the method are theoretically investigated. Numerical example is given to illustrate the applicability, accuracy and stability of the proposed method.展开更多
文摘A new method——the third power B-spline function method is developed to analyse the stability and the buckle of rolled strip under residual stress.The large deflection theory of thin plate is used to calculate the buckle of rolled strip and criterion of critical buckle is given.The computed results tally with those of experiment well,which provides theoretical basis and method for developing the mathematical model of flatness control.
文摘This paper describes an approximating solution, based on Lagrange interpolation and spline functions, to treat functional integral equations of Fredholm type and Volterra type. This method extended to functional integral and integro-differential equations. For showing efficiency of the method we give some numerical examples.
文摘The following article has been retracted due to the investigation of complaints received against it. The Editorial Board found that substantial portions of the text came from other published papers. The scientific community takes a very strong view on this matter, and the Health treats all unethical behavior such as plagiarism seriously. This paper published in Vol.3 No. 4, 334-339, 2012, has been removed from this site.
基金Supported by the Science and Technology Development Fund of Macao(China)grant(No.042/2007/A3,No.003/2008/A1)partly supported by NSFC Project(No.10631080)National Key Basic Research Project of China grant(No.2004CB318000)
文摘In the present paper,a new criterion is derived to obtain the optimum fitting curve while using Cubic B-spline basis functions to remove the statistical noise in the spectroscopic data.In this criterion,firstly,smoothed fitting curves using Cubic B-spline basis functions are selected with the increasing knot number.Then,the best fitting curves are selected according to the value of the minimum residual sum of squares(RSS)of two adjacent fitting curves.In the case of more than one best fitting curves,the authors use Reinsch's first condition to find a better one.The minimum residual sum of squares(RSS)of fitting curve with noisy data is not recommended as the criterion to determine the best fitting curve,because this value decreases to zero as the number of selected channels increases and the minimum value gives no smoothing effect.Compared with Reinsch's method,the derived criterion is simple and enables the smoothing conditions to be determined automatically without any initial input parameter.With the derived criterion,the satisfactory result was obtained for the experimental spectroscopic data to remove the statistical noise using Cubic B-spline basis functions.
文摘Modelling and simulation of projectile flight is at the core of ballistic computer software and is essential to the study of performance of rifles and projectiles in various engagement conditions.An effective and representative numerical model of projectile flight requires a relatively good approximation of the aerodynamics.The aerodynamic coefficients of the projectile model should be described as a series of piecewise polynomial functions of the Mach number that ideally meet the following conditions:they are continuous,differentiable at least once,and have a relatively low degree.The paper provides the steps needed to generate such piecewise polynomial functions using readily available tools,and then compares Piecewise Cubic Hermite Interpolating Polynomial(PCHIP),cubic splines,and piecewise linear functions,and their variant,as potential curve fitting methods to approximate the aerodynamics of a generic small arms projectile.A key contribution of the paper is the application of PCHIP to the approximation of projectile aerodynamics,and its evaluation against a set of criteria.Finally,the paper provides a baseline assessment of the impact of the polynomial functions on flight trajectory predictions obtained with 6-degree-of-freedom simulations of a generic projectile.
基金Supported by the National Natural Science Foundation of China( 1 9971 0 1 7,1 0 1 2 5 1 0 2 )
文摘Based on the definition of MQ-B-Splines,this article constructs five types of univariate quasi-interpolants to non-uniformly distributed data. The error estimates and the shape-preserving properties are shown in details.And examples are shown to demonstrate the capacity of the quasi-interpolants for curve representation.
文摘The main goal of this work is to develop an effective technique for solving nonlinear systems of Volterra integral equations. The main tools are the cardinal spline functions on small compact supports. We solve a system of algebra equations to approximate the solution of the system of integral equations. Since the matrix for the algebraic system is nearly triangular, It is relatively painless to solve for the unknowns and an approximation of the original solution with high precision is accomplished. In order to enhance the accuracy, several cardinal splines are employed in the paper. Our schemes were compared with other techniques proposed in recent papers and the advantage of our method was exhibited with several numerical examples.
文摘In this article, we develop numerical method by constructing ninth degree spline function using extended cubic spline Bickley’s method to find the approximate solution of seventh order linear boundary value problems at different step lengths. The approximate solution is compared with the solution obtained by eighth degree splines and exact solution. It has been observed that the approximate solution is an excellent agreement with exact solution. Low absolute error indicates that our numerical method is effective for solving high order linear boundary value problems.
文摘In this paper,we give four characteristic theorems of the natural Tchebysheff splint functionassociated with multiple knots.These theorems possess specific form,that arc convenient forapplicaton;In the case of with simple knots or polynomial splint,the corollaries of this paper’s the-orems give corresponding results.
文摘The paper introduces a method to get three-dimensional reproduction of log shape by adopting Spline Function in fitting the curve of the finite log data. The method has ad-vantages of higher accuracy, less acquired data, easier to use, etc. Making use of high-precision drawing function of computer, the graphs of log geometric shape in different visual angles can be achieved easily with this method. It also provided a firm foundation for the determination of optimum saw cutting scheme.
文摘Approximation theory experienced a long term history. Since 50’ last century, the rise of spline function as well as the advance of calculation promotes the growth of classical approximation theory and makes them develop a profound theory in maths, and application values have shown among the field of scientific calculation and engineering technology and etc. At present, the study of spline function had made a great progress and had a lot of fruits, as for that, the reader could look up the book [1] or [2]. Nevertheless, the research staff pays less attention to exponential spline function, since polynomial spline function is a special case of that, so it is much essential and meaningful for one to explore the nature of exponential spline function.
文摘In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubic spline numerical model(Spline Model for short),which is with a quasi-Lagrangian time-split integration scheme of fitting cubic spline/bicubic surface to all physical variable fields in the atmospheric equations on spherical discrete latitude-longitude mesh.A new algorithm of"fitting cubic spline—time step integration—fitting cubic spline—……"is developed to determine their first-and2nd-order derivatives and their upstream points for time discrete integral to the governing equations in Spline Model.And the cubic spline function and its mathematical polarities are also discussed to understand the Spline Model’s mathematical foundation of numerical analysis.It is pointed out that the Spline Model has mathematical laws of"convergence"of the cubic spline functions contracting to the original functions as well as its 1st-order and 2nd-order derivatives.The"optimality"of the 2nd-order derivative of the cubic spline functions is optimal approximation to that of the original functions.In addition,a Hermite bicubic patch is equivalent to operate on a grid for a 2nd-order derivative variable field.Besides,the slopes and curvatures of a central difference are identified respectively,with a smoothing coefficient of 1/3,three-point smoothing of that of a cubic spline.Then the slopes and curvatures of a central difference are calculated from the smoothing coefficient 1/3 and three-point smoothing of that of a cubic spline,respectively.Furthermore,a global simulation case of adiabatic,non-frictional and"incompressible"model atmosphere is shown with the quasi-Lagrangian time integration by using a global Spline Model,whose initial condition comes from the NCEP reanalysis data,along with quasi-uniform latitude-longitude grids and the so-called"shallow atmosphere"Navier-Stokes primitive equations in the spherical coordinates.The Spline Model,which adopted the Navier-Stokes primitive equations and quasi-Lagrangian time-split integration scheme,provides an initial ideal case of global atmospheric circulation.In addition,considering the essentially non-linear atmospheric motions,the Spline Model could judge reasonably well simple points of any smoothed variable field according to its fitting spline curvatures that must conform to its physical interpretation.
文摘This paper presents a class of Cn- continuous B- type spline curves with some paramet- ric factors.The length of their local support is equal to4.Taking the different values of the parametric factors,the curves can become free- type curves or interpolate a set of given points even mix the both cases.When the parametric factors satisfy the certain conditions,the degrees of the curves can be decreased as low as possible.Besides,when all the parametric factors tend to zero,the curves globally approximate to the control polygon.
文摘The aim of this paper is to approximate the solution of system of fractional delay differential equations. Our technique relies on the use of suitable spline functions of polynomial form. We introduce the description of the proposed approximation method. The error analysis and stability of the method are theoretically investigated. Numerical example is given to illustrate the applicability, accuracy and stability of the proposed method.