Ni-rich layered oxide cathodes have shown promise for high-energy lithium-ion batteries(LIBs)but are usually limited to mild environments because of their rapid performance degradation under extreme temperature condit...Ni-rich layered oxide cathodes have shown promise for high-energy lithium-ion batteries(LIBs)but are usually limited to mild environments because of their rapid performance degradation under extreme temperature conditions(below0°C and above 50 °C).Here,we report the design of F/Mo co-doped LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(FMNCM)cathode for high-performance LIBs from-20 to 60°C.F^(-) doping with high electronegativity into the cathode surface is found to enhance the stability of surface lattice structure and protect the interface from side reactions with the electrolyte by generating a LiF-rich surface layer.Concurrently,the Mo^(6+) doping suppresses phase transition,which blocks Li^(+)/Ni^(2+) mixing,and stabilizes lithium-ion diffusion pathway.Remarkably,the FMNCM cathode demonstrates excellent cycling stability at a high cutoff voltage of 4.4 V,even at 60°C,maintaining 90.6%capacity retention at 3 C after 150 cycles.Additionally,at temperatures as low as-20°C,it retains 77.1%of its room temperature capacity,achieving an impressive 97.5%capacity retention after 500 cycles.Such stable operation under wide temperatures has been further validated in practical Ah-level pouch-cells.This study sheds light on both fundamental mechanisms and practical implications for the design of advanced cathode materials for wide-temperature LIBs,presenting a promising path towards high-energy and long-cycling LIBs with temperatureadaptability.展开更多
Layered LiCoO_(2)(LCO)acts as a dominant cathode material for lithium-ion batteries(LIBs)in 3C products because of its high compacted density and volumetric energy density.Although improving the high cutoff voltage is...Layered LiCoO_(2)(LCO)acts as a dominant cathode material for lithium-ion batteries(LIBs)in 3C products because of its high compacted density and volumetric energy density.Although improving the high cutoff voltage is an effective strategy to increase its capacity,such behavior would trigger rapid capacity decay due to the surface or/and structure degradation.Herein,we propose a bi-functional surface strategy involving constructing a robust spinel-like phase coating layer with great integrity and compatibility to LiCoO_(2) and modulating crystal lattice by anion and cation gradient co-doping at the subsurface.As a result,the modified LiCoO_(2)(AFM-LCO)shows a capacity retention of 80.9%after 500 cycles between 3.0and 4.6 V.The Al,F,Mg enriched spinel-like phase coating layer serves as a robust physical barrier to effectively inhibit the undesired side reactions between the electrolyte and the cathode.Meanwhile,the Al,F,Mg gradient co-doping significantly enhances the surficial structure stability,suppresses Co dissolution and oxygen release,providing a stable path for Li-ions mobility all through the long-term cycles.Thus,the surface bi-functional strategy is an effective method to synergistically improve the electrochemical performances of LCO at a high cut-off voltage of 4.6 V.展开更多
基金the financial support from the National Natural Science Foundation of China(51972156,52072378,52102054 and 51927803)the National Key R&D Program of China(2022YFB3803400,2021YFB3800301)+2 种基金the Shenyang Science and Technology Program(22-322-3-19)the Youth Fund of the Education Department of Liaoning Province(LJKQZ20222324)the Outstanding Youth Fund of University of Science and Technology Liaoning(2023YQ11).
文摘Ni-rich layered oxide cathodes have shown promise for high-energy lithium-ion batteries(LIBs)but are usually limited to mild environments because of their rapid performance degradation under extreme temperature conditions(below0°C and above 50 °C).Here,we report the design of F/Mo co-doped LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(FMNCM)cathode for high-performance LIBs from-20 to 60°C.F^(-) doping with high electronegativity into the cathode surface is found to enhance the stability of surface lattice structure and protect the interface from side reactions with the electrolyte by generating a LiF-rich surface layer.Concurrently,the Mo^(6+) doping suppresses phase transition,which blocks Li^(+)/Ni^(2+) mixing,and stabilizes lithium-ion diffusion pathway.Remarkably,the FMNCM cathode demonstrates excellent cycling stability at a high cutoff voltage of 4.4 V,even at 60°C,maintaining 90.6%capacity retention at 3 C after 150 cycles.Additionally,at temperatures as low as-20°C,it retains 77.1%of its room temperature capacity,achieving an impressive 97.5%capacity retention after 500 cycles.Such stable operation under wide temperatures has been further validated in practical Ah-level pouch-cells.This study sheds light on both fundamental mechanisms and practical implications for the design of advanced cathode materials for wide-temperature LIBs,presenting a promising path towards high-energy and long-cycling LIBs with temperatureadaptability.
基金supported by the National Natural Science Foundation of China(22075170,52072233)the Beijing National Laboratory for Condensed Matter Physics。
文摘Layered LiCoO_(2)(LCO)acts as a dominant cathode material for lithium-ion batteries(LIBs)in 3C products because of its high compacted density and volumetric energy density.Although improving the high cutoff voltage is an effective strategy to increase its capacity,such behavior would trigger rapid capacity decay due to the surface or/and structure degradation.Herein,we propose a bi-functional surface strategy involving constructing a robust spinel-like phase coating layer with great integrity and compatibility to LiCoO_(2) and modulating crystal lattice by anion and cation gradient co-doping at the subsurface.As a result,the modified LiCoO_(2)(AFM-LCO)shows a capacity retention of 80.9%after 500 cycles between 3.0and 4.6 V.The Al,F,Mg enriched spinel-like phase coating layer serves as a robust physical barrier to effectively inhibit the undesired side reactions between the electrolyte and the cathode.Meanwhile,the Al,F,Mg gradient co-doping significantly enhances the surficial structure stability,suppresses Co dissolution and oxygen release,providing a stable path for Li-ions mobility all through the long-term cycles.Thus,the surface bi-functional strategy is an effective method to synergistically improve the electrochemical performances of LCO at a high cut-off voltage of 4.6 V.