期刊文献+
共找到1,730篇文章
< 1 2 87 >
每页显示 20 50 100
Improved Mechanical Properties of Textile Reinforced Concrete Thin Plate 被引量:5
1
作者 尹世平 徐世烺 LI Hedong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第1期92-98,共7页
Textile reinforced concrete (TRC) is especially suitable for the thin-walled and light-weight structural elements with a high load-bearing capacity. For this thin element, the concrete cover thickness is an importan... Textile reinforced concrete (TRC) is especially suitable for the thin-walled and light-weight structural elements with a high load-bearing capacity. For this thin element, the concrete cover thickness is an important factor in affecting the mechanical and anti-crack performance. Therefore, the influences of the surface treatment of the textile and mixing polypropylene fiber into the concrete on the properties of the components with different cover thickness were experimentally studied with four-point bending tests. The experimental results show that for the components with the same cover thickness, sticking sand on epoxy resin-impregnated textile and adding short fiber into the concrete are helpful to improve their mechanical performance. The 2-3 mm cover thickness is enough to meet the anchorage requirements of the reinforcement fiber and the component has good crack pattern and mechanical behavior at this condition. Comparison between the calculated and the experimental Values of flexural capacity reveals satisfactory agreement. Finally, based on the calculation model of the crack spacing of reinforced concrete structures, the crack extension of this thin-wall component was qualitatively analyzed and the same results with the experimental were obtained. 展开更多
关键词 textile reinforced concrete thin plate cover thickness mechanical performance cracking mechanism
下载PDF
Nonlocal thermal buckling and postbuckling of functionally graded graphene nanoplatelet reinforced piezoelectric micro-plate 被引量:2
2
作者 Shuai WANG Jiajia MAO +1 位作者 Wei ZHANG Haoming LU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第3期341-354,共14页
This paper analyzes the nonlocal thermal buckling and postbuckling behaviors of a multi-layered graphene nanoplatelet(GPL)reinforced piezoelectric micro-plate.The GPLs are supposed to disperse as a gradient pattern in... This paper analyzes the nonlocal thermal buckling and postbuckling behaviors of a multi-layered graphene nanoplatelet(GPL)reinforced piezoelectric micro-plate.The GPLs are supposed to disperse as a gradient pattern in the composite micro-plate along its thickness.The effective material properties are calculated by the Halpin-Tsai parallel model and mixture rule for the functionally graded GPL reinforced piezoelectric(FG-GRP)micro-plate.Governing equations for the nonlocal thermal buckling and postbuckling behaviors of the FG-GRP micro-plate are obtained by the first-order shear deformation theory,the von Kármán nonlinear theory,and the minimum potential energy principle.The differential quadrature(DQ)method and iterative method are introduced to numerically analyze the effects of the external electric voltage,the distribution pattern and characteristic of GPLs,and the nonlocal parameter on the critical buckling behaviors and postbuckling equilibrium path of the FG-GRP micro-plate in thermal environment. 展开更多
关键词 graphene reinforced composite functionally graded(FG)plate thermal buckling thermal postbuckling nonlocal theory small-scale effect
下载PDF
The ultimate strength of doubler plate reinforced Y-joints under compression loading 被引量:1
3
作者 FENQ Qi TAN Jia-hua 《Journal of Marine Science and Application》 2005年第2期13-19,共7页
It is common practice in the offshore industry to solve the punching shear problem due to compression by using doubler plate. The finite-element method is a useful tool for studying this problem. The aim of this paper... It is common practice in the offshore industry to solve the punching shear problem due to compression by using doubler plate. The finite-element method is a useful tool for studying this problem. The aim of this paper is to study the static strength of doubler plate reinforced Y-joints subjected to compression loading. The finite-element method is adopted in numerical parametric studies. The individual influences of the geometric parameters βand τd (doubler plate to chord wall thickness ratio) and ld/d1(dubler plate length to brace diameter ratio) on the ultimate strength are made clear. The results show the size of plate may have important effects on the strength of reinforced joints. It is found that the ultimate strength of Y-joints reinforced with appropriately proportioned doubler plates can be greatly improved nearly up tothree times to un-reinforced Y-joints. 展开更多
关键词 static strength finite element analysis doubler plates reinforced joints Y-joints
下载PDF
Compressive Behavior of Steel Members Reinforced by Patch Plate with Welding and Bonding 被引量:1
4
作者 Xiaoyang Liu Mikihito Hirohata 《Open Journal of Civil Engineering》 2018年第4期341-357,共17页
Repair and reinformcement of aged civil steel structures is one of the important issues for maintaining and using them for a long term. For repair and reinforcement of deteriorated civil steel structures due to fatigu... Repair and reinformcement of aged civil steel structures is one of the important issues for maintaining and using them for a long term. For repair and reinforcement of deteriorated civil steel structures due to fatigue and corrosion, patch plate reinforcement is widely applied. Bolting is generally used because of easy quality control and many construction achievements. However, bolting has downsides including holes made and weight increase. Welding is considered to overcome these demerits but in reality the application of welding is unsatisfactory due to the possibility of fatigue crack occurring from the welded part. In this study, a patch plate strengthening system of welded joint assisted with bonding has been proposed. The compressive behaviors of weld-bond jointed specimen were investigated by a series of experiments and FE analysis. It was confirmed that use of welding and bonding was effective to enhance compressive strength of specimen, due to better load-carrying capacity of patch plate compared with sole use of welding. 展开更多
关键词 WELDING BONDING COMPRESSIVE Behavior PATCH plate reinforcEMENT
下载PDF
A refined finite element method for bending analysis of laminated plates integrated with piezoelectric fiber-reinforced composite actuators 被引量:3
5
作者 J.Rouzegar A.Abbasi 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第4期689-705,共17页
This research presents a finite element formulation based on four-variable refined plate theory for bending analysis of cross-ply and angle-ply laminated composite plates integrated with a piezoelectric fiber-reinforc... This research presents a finite element formulation based on four-variable refined plate theory for bending analysis of cross-ply and angle-ply laminated composite plates integrated with a piezoelectric fiber-reinforced composite actuator under electromechanical loading. The four-variable refined plate theory is a simple and efficient higher-order shear deformation theory, which predicts parabolic variation of transverse shear stresses across the plate thickness and satisfies zero traction conditions on the plate free surfaces. The weak form of governing equations is derived using the principle of minimum potential energy, and a 4-node non-conforming rectangular plate element with 8 degrees of freedom per node is introduced for discretizing the domain. Several benchmark problems are solved by the developed MATLAB code and the obtained results are compared with those from exact and other numerical solutions, showing good agreement. 展开更多
关键词 Finite elementmethod Laminated plate Piezoelectric fiber-reinforced composite(PFRC)actuator PIEZOELECTRIC Refined plate theory Smart structures
下载PDF
Plate reinforced square hollow section X-joints subjected to in-plane moment 被引量:2
6
作者 陈希湘 陈誉 陈栋芬 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期1002-1015,共14页
The static test of 13 square hollow section(SHS) X-joints with different β and different types of plate reinforcement under in-plane moment in brace was carried out. Experimental test schemes, failure modes of specim... The static test of 13 square hollow section(SHS) X-joints with different β and different types of plate reinforcement under in-plane moment in brace was carried out. Experimental test schemes, failure modes of specimens, moment-vertical displacement curves, moment-deformation of the chord, and strain strength distribution curves were presented. The effect of β and plate reinforcement types on in-plane flexural property of SHS X-joints was studied. Results show that punching shear of chord face disappears, brace material fracture appears and concave and convex deformation of chord decrease when either collar plates or doubler plates were welded on chord face. Moment-vertical displacement curves of all specimens have obvious elastic, elastic-plastic and plastic stages. As β increases, the in-plane flexural ultimate capacity and initial stiffness of joints of the same plate reinforcement type increase, but ductility of joints decreases. With the same β, the in-plane flexural initial stiffness and ultimate capacity of doubler plate reinforced joints, collar plate reinforced joints, and unreinforced joints decrease progressively. Thickness of reinforcement plate has no obvious effect on in-plane flexural initial stiffness and ultimate capacity of joints. As thickness of reinforcement plate increases, the ductility of reinforced X-joints decreases. The concave and convex deformation of every specimen has good symmetry;as β increases, the yield and ultimate deformation of chord decrease. 展开更多
关键词 failure analysis square hollow section(SHS) X-joints plate reinforcement types in-plane flexural property ultimate capacity initial stiffness strain strength distribution ductility
下载PDF
Uplift of Symmetrical Anchor Plates by Using Grid-Fixed Reinforced Reinforcement in Cohesionless Soil
7
作者 Hamed Niroumand Khairul Anuar Kassim 《China Ocean Engineering》 SCIE EI CSCD 2014年第1期115-126,共12页
Uplift response of symmetrical anchor plates with and without grid fixed reinforced (GFR) reinforcement was evaluated in model tests and numerical simulations by Plaxis. Many variations of reinforcement layers were ... Uplift response of symmetrical anchor plates with and without grid fixed reinforced (GFR) reinforcement was evaluated in model tests and numerical simulations by Plaxis. Many variations of reinforcement layers were used to reinforce the sandy soil over symmetrical anchor plates. In the current research, different factors such as relative density of sand, embedment ratios, and various GFR parameters including size, number of layers, and the proximity of the layer to the symmetrical anchor plate were investigated in a scale model. The failure mechanism and the associated rupture surface were observed and evaluated. GFR, a tied up system made of fiber reinforcement polymer (FRP) strips and end balls, was connected to the geosynthetic material and anchored into the soil. Test results showed that using GFR reinforcement significantly improved the uplift capacity of anchor plates. It was found that the inclusion of one layer of GFR, which rested directly on the top of the anchor plate, was more effective in enhancing the anchor capacity itself than other methods. It was found that by including GFR the uplift response was improved by 29%. Multi layers of GFR proved more effective in enhancing the uplift capacity than a single GFR reinforcement. This is due to the additional anchorage provided by the GFR at each level of reinforcement. In general, the results show that the uplift capacity of symmetrical anchor plates in loose and dense sand can be significantly increased by the inclusion of GFR. It was also observed that the inclusion of GFR reduced the requirement for a large L/D ratio to achieve the required uplift capacity. The laboratory and numerical analysis results are found to be in agreement in terms of breakout factor and failure mechanism pattern. 展开更多
关键词 grid fixed reinforced (GFR) PLAXIS fiber reinforcement polymer (FRP) uplift response anchor plate
下载PDF
Finite Element Analysis of Reinforced Concrete Plate Impacted by Block
8
作者 LUO Xiaoyang Pascal PERROTIN YAN Quansheng 《Transactions of Tianjin University》 EI CAS 2006年第B09期117-121,共5页
A new concept of structurally dissipating rock-shed (SDR) was developed by the lab of Tonello IC and LOCIE-ESIGEC (France). To decide the dimension of the plate used in SDR, an ANSYS model which could simulate the imp... A new concept of structurally dissipating rock-shed (SDR) was developed by the lab of Tonello IC and LOCIE-ESIGEC (France). To decide the dimension of the plate used in SDR, an ANSYS model which could simulate the impact of rock in the centre of the plate was established by Fabien Delhomme. By using this model, some finite element analyses are carried out in the present paper. Firstly, a plate impacted by a block is numerically simulated, the numerical results obtained from different mesh sizes are compared and the accuracy of the finite element model is verified. Then, the dynamic response of the plate impacted at the boundary and in the medium part is computed. By analyzing the stress in rebar, the most dangerous region of impact of plate was found. For a rectangular plate, the most dangerous region is at the corner of the plate when a block drops in. Finally, the whole deformation process of the plate under dropping block was simulated and a simplified definition (effect zone) to describe the deformation process in different positions of plate was given. From this study, it is found that the impact only affects heavily within the effect zone. 展开更多
关键词 rock-sheds reinforced concrete plate impact ANSYS post-processing
下载PDF
Bending and stress analysis of polymeric composite plates reinforced with functionally graded graphene platelets based on sinusoidal shear-deformation plate theory
9
作者 Mohammad Arefi Ali Tabatabaeian Masoud Mohammadi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第1期64-74,共11页
The bending and stress analysis of a functionally graded polymer composite plate reinforced with graphene platelets are studied in this paper.The governing equations are derived by using principle of virtual work for ... The bending and stress analysis of a functionally graded polymer composite plate reinforced with graphene platelets are studied in this paper.The governing equations are derived by using principle of virtual work for a plate which is rested on Pasternak’s foundation.Sinusoidal shear deformation theory is used to describe displacement field.Four different distribution patterns are employed in our analysis.The analytical solution is presented for a functionally graded plate to investigate the influence of important parameters.The numerical results are presented to show the deflection and stress results of the problem for four employed patterns in terms of geometric parameters such as number of layers,weight fraction and two parameters of Pasternak’s foundation. 展开更多
关键词 reinforced composite plate Graphene platelet Sinusoidal shear deformation theory Pasternak’s foundation Stress and deformation analysis
下载PDF
The effect of initial geometric imperfection on the nonlinear resonance of functionally graded carbon nanotube-reinforced composite rectangular plates
10
作者 R.GHOLAMI R.ANSARI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第9期1219-1238,共20页
The purpose of the present study is to examine the impact of initial geometric imperfection on the nonlinear dynamical characteristics of functionally graded carbon nanotube-reinforced composite(FG-CNTRC) rectangular ... The purpose of the present study is to examine the impact of initial geometric imperfection on the nonlinear dynamical characteristics of functionally graded carbon nanotube-reinforced composite(FG-CNTRC) rectangular plates under a harmonic excitation transverse load. The considered plate is assumed to be made of matrix and single-walled carbon nanotubes(SWCNTs). The rule of mixture is employed to calculate the effective material properties of the plate. Within the framework of the parabolic shear deformation plate theory with taking the influence of transverse shear deformation and rotary inertia into account, Hamilton’s principle is utilized to derive the geometrically nonlinear mathematical formulation including the governing equations and corresponding boundary conditions of initially imperfect FG-CNTRC plates. Afterwards, with the aid of an efficient multistep numerical solution methodology, the frequency-amplitude and forcing-amplitude curves of initially imperfect FG-CNTRC rectangular plates with various edge conditions are provided, demonstrating the influence of initial imperfection,geometrical parameters, and edge conditions. It is displayed that an increase in the initial geometric imperfection intensifies the softening-type behavior of system, while no softening behavior can be found in the frequency-amplitude curve of a perfect plate. 展开更多
关键词 nonlinear dynamical characteristics imperfect functionally graded carbon nanotube-reinforced composite(FG-CNTRC) rectangular plate geometric imperfection sensitivity
下载PDF
钢板混凝土墙-钢筋混凝土楼板连接节点抗剪性能
11
作者 于跃 隋春光 +1 位作者 雷永旺 郭全全 《哈尔滨工业大学学报》 EI CAS 北大核心 2025年第1期92-100,共9页
模块化技术正在推动新一代核电厂的设计和发展,兼具优良工作性能和工业化施工性能的钢板混凝土(SC)结构在模块化结构具有广泛应用前景。SC墙-RC楼板连接节点作为SC模块结构与RC结构之间的典型传力构件,其结构设计必须既要保证荷载的有... 模块化技术正在推动新一代核电厂的设计和发展,兼具优良工作性能和工业化施工性能的钢板混凝土(SC)结构在模块化结构具有广泛应用前景。SC墙-RC楼板连接节点作为SC模块结构与RC结构之间的典型传力构件,其结构设计必须既要保证荷载的有效传递,又要考虑模块化施工的可行性。为研究SC墙-RC楼板连接节点抗剪性能,设计并完成了2个“薄墙厚板型”SC墙-RC楼板连接节点循环加载试验,包括GB/T 51340—2018建议的钢筋连接器连接、附加抗剪键等两种连接方式。试验结果表明:在剪跨比1.50下试件均发生RC楼板弯剪破坏,节点主要传力破坏路径为加载端至楼板根部的斜压杆区域,说明节点结合面不配置抗剪键仍满足抗剪要求;试验过程中,直螺纹钢筋套筒无滑脱、未发生钢筋或焊缝拉断,延性系数均大于4,说明钢筋连接器连接的传力性能良好,可作为SC墙-RC楼板连接节点的有效连接方式;该节点核心区仍属于抗剪薄弱区域,若要满足“全强度连接”设计准则,核心区对拉筋体积含钢率应不低于0.59%。 展开更多
关键词 钢板混凝土墙 钢筋混凝土楼板 连接节点 钢筋连接器 抗剪键
下载PDF
Experimental study and analysis on fatigue stiffness of RC beams strengthened with CFRP and steel plate 被引量:13
12
作者 卢亦焱 胡玲 +1 位作者 李杉 王康昊 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第3期701-707,共7页
The objective of this work is to investigate the fatigue behavior of reinforced concrete(RC) beams strengthened with externally bonded carbon fiber reinforced polymer(CFRP) and steel plate. An experimental investigati... The objective of this work is to investigate the fatigue behavior of reinforced concrete(RC) beams strengthened with externally bonded carbon fiber reinforced polymer(CFRP) and steel plate. An experimental investigation and theoretical analysis were made on the law of deflection development and stiffness degradation, as well as the influence of fatigue load ranges. Test results indicate that the law of three-stage change under fatigue loading is followed by both midspan deflection and permanent deflection, which also have positive correlation with fatigue load amplitude. Fatigue stiffness of composite strengthened beams degrades gradually with the increasing of number of cycles. Based on the experimental results, a theoretical model by effective moment of inertia method is developed for calculating the sectional stiffness of such composite strengthened beams under fatigue loading, and the calculated results are in good agreement with the experimental results. 展开更多
关键词 carbon fiber reinforced polymer steel plate composite strengthening technique reinforced concrete beams fatigue stiffness
下载PDF
Experimental Study on Tensile Properties of Steel Plate Bonded by CFRP 被引量:1
13
作者 卢亦焱 张号军 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第5期727-732,共6页
The tensile properties of five groups of composite specimens, which consist of steel plate bonded by CFRP,were experimentally researched. The failure types, performing characteristics and failure mechanism of the comp... The tensile properties of five groups of composite specimens, which consist of steel plate bonded by CFRP,were experimentally researched. The failure types, performing characteristics and failure mechanism of the composite specimens were investigated in detail. The influence of different ratio of CFRP on bearing capacity, loading-strain curves, compound modulus, rigidity and ductility of the composite specimens was analyzed. The experimental results indicate that the composite specimen can work harmonically and the steel plate does not break in tension. Comparing with steel plate, the bearing capacity and the rigidity of the composite specimens increase and ductility decreases. The bearing capacity increases sharply with the increase in the number of layers of CFRP. With the increase in CFRP, the yield strength increases slightly and ductility decreases. The experimental researches can provide a theoretical basis for engineering application of combination strengthening. 展开更多
关键词 steel plate Carbon Fiber reinforced Polymer (CFRP) combination strengthening tensile properties experimental study
下载PDF
Experimental study on mechanical property of stiffening-ribbed-hollow-pipe cast-in place reinforced concrete girderless floor 被引量:4
14
作者 YANG Wei-jun ZHANG Zhen-hao LIU Chen-wei 《Journal of Civil Engineering and Architecture》 2009年第3期59-69,共11页
Stiffening-ribbed-hollow-pipe cast-in place reinforced concrete girderless floor is a new-style hollow girderless floor system. Model experimental researches of simply-supported floor and four-corners bearing floor ha... Stiffening-ribbed-hollow-pipe cast-in place reinforced concrete girderless floor is a new-style hollow girderless floor system. Model experimental researches of simply-supported floor and four-corners bearing floor have been done on this new kind of floor system in this paper. The experiment results show that the floor system has good mechanical property such as high bearing capacity, big rigidity and good tensility. A theoretical method is presented in this paper that the stiffening-ribbed-hollow-pipe girderless floor can be analyzed by being converted equivalently to orthotropic solid slab. It is indicated that the method is correct and reasonable according to the contrast between theoretical calculated results and experimental measured results. The theoretical results coincide with the measured results well. 展开更多
关键词 stiffening ribbed hollow pipe cast-in place reinforced concrete girderless floor experiment analogous orthotropic plate RIGIDITY
下载PDF
Reinforcement Method of the Tubular Joints under Combined Loads Based on ANSYS Software
15
作者 QI Bao LIN Hong +2 位作者 LI Ping JIANG Kun MA Mingjun 《Journal of Donghua University(English Edition)》 EI CAS 2019年第3期215-220,共6页
The jacket offshore platform structures working in the environment are subjected to various external conditions,such as wave loads,wind loads and corrosion of sea water.Therefore,the research on reinforcement of tubul... The jacket offshore platform structures working in the environment are subjected to various external conditions,such as wave loads,wind loads and corrosion of sea water.Therefore,the research on reinforcement of tubular joints has great practical value for the safety of offshore platforms.In this article,the finite element(FE)models of T-type tubular joint(T-joint)and K-type tubular joint(K-joint)are established by ANSYS software.Triangular rib reinforcement and collar plate reinforcement are used to reinforce the tubular joints.The reinforcement effects are assessed through the ultimate bearing capacity,and the influences of parameters of the rib and the collar plate on the ultimate capacity are analyzed.Besides,the effects of the two reinforcement methods are compared under the combined loads,and the results show that the reinforcement of the ribbed plate is more effective in resisting the deformation caused by bending moment,while the reinforcement of the collar plate is more effective to avoid the plastic damage caused by the axial pressure. 展开更多
关键词 TUBULAR joint TRIANGULAR RIB reinforcEMENT COLLAR plate reinforcEMENT ULTIMATE capacity combined load
下载PDF
Tailoring microstructure and mechanical properties of aluminum matrix composites reinforced with novel Al/CuFe multi-layered core-shell particles
16
作者 Rashid ALI Fahad ALI +6 位作者 Aqib ZAHOOR Rub Nawaz SHAHID Naeem ul Haq TARIQ Zafar IQBAL Adnan Qayyum BUTT Saad ULLAH Hasan Bin AWAIS 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第6期1822-1833,共12页
Aluminum matrix composites(AMCs), reinforced with novel pre-synthesized Al/Cu Fe multi-layered coreshell particles, were fabricated by different consolidation techniques to investigate their effect on microstructure a... Aluminum matrix composites(AMCs), reinforced with novel pre-synthesized Al/Cu Fe multi-layered coreshell particles, were fabricated by different consolidation techniques to investigate their effect on microstructure and mechanical properties. To synthesize multi-layered Al/Cu Fe core-shell particles, Cu and Fe layers were deposited on Al powder particles by galvanic replacement and electroless plating method, respectively. The core-shell powder and sintered compacts were characterized by using X-ray diffraction(XRD), scanning electron microscopy(SEM) equipped with energy dispersive spectroscopy(EDX), pycnometer, microhardness and compression tests. The results revealed that a higher extent of interfacial reactions, due to the transformation of the deposited layer into intermetallic phases in spark plasma sintered composite, resulted in high relative density(99.26%), microhardness(165 HV0.3) and strength(572 MPa). Further, the presence of un-transformed Cu in the shell structure of hot-pressed composite resulted in the highest fracture strain(20.4%). The obtained results provide stronger implications for tailoring the microstructure of AMCs through selecting appropriate sintering paths to control mechanical properties. 展开更多
关键词 core-shell reinforcement aluminum matrix composites electroless plating sintering techniques spark plasma sintering interfacial reaction
下载PDF
Reinforcement and numerical analysis on the corbel of a halfthrough arch bridge
17
作者 廖碧海 《Journal of Chongqing University》 CAS 2009年第1期57-62,共6页
Corbels support the crossbeams of half-through arch bridges. They are prone to cracking easily due to their characteristics and complicated loading conditions. Based on a practical diagnosis of a bridge crossbeam, we ... Corbels support the crossbeams of half-through arch bridges. They are prone to cracking easily due to their characteristics and complicated loading conditions. Based on a practical diagnosis of a bridge crossbeam, we bonded steel plates onto bridge corbels to strengthen them. We carried out a numerical analysis on the effectiveness of the reinforcement by using the commercial sof^are ANSYS. The numerical analysis shows that the stresses near the section break increased slightly, but the variation amplitude was small and all the stresses were within an allowable range. The loading test indicates that it is feasible to strengthen the corbel with vertical bonded steel plates. Therefore, the reinforcement is effective and economical. This reinforcement method is suitable for this type of corbel and can be applied in similar cases. 展开更多
关键词 reinforcEMENT corbel of crossbeam half-through arch bridge bonded steel plate finite element method
下载PDF
Structural Performance of Smart CFRP-FBG Reinforced Steel Beams
18
作者 Huaping Wang Tao Song +1 位作者 Hengyang Li Siyuan Feng 《Journal of Architectural Environment & Structural Engineering Research》 2020年第4期9-15,共7页
Many beam structures suffer from gradual performance degradation with the increase of service life.To recover the bearing capacity of these beams,carbon fiber reinforced polymer(CFRP)plates are developed to attached o... Many beam structures suffer from gradual performance degradation with the increase of service life.To recover the bearing capacity of these beams,carbon fiber reinforced polymer(CFRP)plates are developed to attached on the beam bottom.To check the structural performance of the CFRP reinforced beams,smart CFRP plate with FBGs in series is designed and LVDTs are adopted to measure the deformations.The deflection of the reinforced beam is given based on the elastic conversion cross-section method.The experimental results validate the effectiveness of the proposed algorithm.The study shows that the CFRP reinforced zone has a larger flexural rigidity than the pure steel beam zone.The general distribution of the deflection along the span of the CFRP reinforced beam can be described by the proposed formula.It provides a scientific design guidance for the deflection control of CFRP reinforced structures. 展开更多
关键词 CFRP reinforced beam Interfacial interaction Smart CFRP-FBG plate DEFLECTION Experimental investigation
下载PDF
Strengthening of Sewerage Systems with Composites Plates:Numerical Optimization
19
作者 Stephan Kesteloot Chafika Djelal +1 位作者 Idriss Benslimane Said Baraka 《Materials Sciences and Applications》 2011年第3期151-162,共12页
Sewerage systems are subject to many types of degradation. In France, an estimated 10% of the total systems length requires work due to structural degradation. At present, there is no method to localised rehabilitatio... Sewerage systems are subject to many types of degradation. In France, an estimated 10% of the total systems length requires work due to structural degradation. At present, there is no method to localised rehabilitation of man-entry sewers. Laboratory tests have validated localised methods that involve bonding composite plates to the sewer. Those tests were performed on pre-damaged (multi-cracked) ovoid test pieces. The degradation observed was a longitudinal crack opened at the crown. The tests were performed under vertical loading. Our Study concerns the application of partial lining of sewer with composites plates. The composite strengtheners used were 1.2 mm thick pultruded carbon plates. A series of experiments were carried out on reinforced-concrete ovoids (T180) strengthened and unstrengthened by carbon plates in the keystone. After this test, a vertically-loaded ovoid was subjected to three-dimensional modelling in order to determinate its structural behavior and collapse mechanism. Knowledge of the latter make it possible to limit the areas in need of strengthening. An ovoid strengthened by composite plates adhered to the damaged areas was also modelled. Using real case data, modelling was carried out using a finite-element computational software program. This program allows cracking to be monitored until the structure collapses. Many conventional approaches using intensity factors k and contour integrals J have already been reported in the literature. We used methods for restituting energy G. Because nonlinear elasticity was being calculated, the constitutive laws of the various materials had to be taken into account. These constitutive laws describe the evolution of the materials. Moreover, those laws are subject to deformation limits. The simulated models were homogeneously meshed with physically nonlinear, triangular elements. The test results were then compared to those of the digital models. Partial lining of a sewer with composite plates, compared to a traditional reinforced-concrete lining, achieves a cost reduction of about 55%. 展开更多
关键词 Sewerage Systems Carbon plates CONCRETE REPAIR reinforcEMENT Finites Elements
下载PDF
波纹板加固技术在铁路病害涵洞中的应用研究 被引量:1
20
作者 陈树礼 崔春锴 +2 位作者 杜明康 刘永前 许宏伟 《铁道标准设计》 北大核心 2024年第6期86-93,共8页
涵洞是铁路的重要组成部分,也是日常管养中最容易忽略的铁路设备,涵洞结构的劣化状况和受力性能直接影响线路的安全与稳定。针对提速改造条件下重载铁路涵洞出现的承载能力不足、沉降过大、错位和耐久性降低等诸多问题,基于有限元分析... 涵洞是铁路的重要组成部分,也是日常管养中最容易忽略的铁路设备,涵洞结构的劣化状况和受力性能直接影响线路的安全与稳定。针对提速改造条件下重载铁路涵洞出现的承载能力不足、沉降过大、错位和耐久性降低等诸多问题,基于有限元分析、试验检测和工程应用等方法,开展拼装波纹板加固涵洞机理分析、波纹板关键参数加固涵洞性能与敏感性分析,以及波纹板加固涵洞实际工程应用技术研究。研究结果表明:既有涵洞采用波纹板加固技术后,涵洞结构整体刚度显著提高,涵洞顶板受力和变形明显降低,加固效果较好;同样尺寸条件下,相对于矩形和三角形波纹板结构,采用圆弧形波纹板加固涵洞后,其顶板跨中最大竖向位移和最大应力值均能减小20%及以上,圆弧形波纹板具有更好的加固效果;主力组合荷载作用下,随波纹板波高和波距增加,波纹板Mises应力表现为逐渐减小趋势,且Mises应力与涵洞跨度基本成反比关系。16座涵洞现场实测结果表明,采用波纹板加固后,不同跨径盖板涵和框构涵受力和变形显著降低,跨中挠度及动应变较加固前降低幅度均超过40%,波纹板技术在重载铁路病害涵洞中具有较好的加固效果。 展开更多
关键词 铁路涵洞 病害涵洞 波纹板 加固技术 数值模拟 工程应用
下载PDF
上一页 1 2 87 下一页 到第
使用帮助 返回顶部