On the basis of energy and shape method for the determination of the valence bond ( VB ) structures of crystal, the valence bond structure of titanium is redetermined at room temperature and calculated in the whole ...On the basis of energy and shape method for the determination of the valence bond ( VB ) structures of crystal, the valence bond structure of titanium is redetermined at room temperature and calculated in the whole temperature range of 0-1943K. The outer shell electronic distribution of Ti is ec^29907. (sc^0.4980 + dc^2.4927) ef^1.0098 in crystal. The temperature dependences of the VB structures of hcp and bcc phases are the same. The VB structures of hcp and bcc phases monotonically increase or decrease with the increase in temperature, but show discontinuous changes at the phase-transformation temperature 1155K.展开更多
Ions or molecules are said to be isoelectronic if they are composed of different elements but have the same number of electrons, the same number of covalent bonds and the same structure. This criterion is unfortunatel...Ions or molecules are said to be isoelectronic if they are composed of different elements but have the same number of electrons, the same number of covalent bonds and the same structure. This criterion is unfortunately not sufficient to ensure that a chemical structure is a valid chemical compound. In a previous article, a procedure has been described to draw 2D valid structural formulas: the even-odd rule. This rule has been applied first to single-bonded molecules then to single-charged single-bonded ions. It covers hypovalent, hypervalent or classic Lewis’ octet compounds. The funding principle of the even-odd rule is that each atom of the compound possesses an outer-shell filled only with pairs of electrons. The application of this rule guarantees validity of any single-covalent-bond chemical structure. In the present paper, this even-odd rule and its electron-pair criterion are checked for coherence with an effective-valence isoelectronic rule using numerous known compounds having single-covalent-bond connections. The test addresses Lewis’ octet ions or molecules as well as hypovalent and hypervalent compounds. The article concludes that the even-odd rule and the effective-valence isoelectronicity rule are coherent for known single-covalent-bond chemical compounds.展开更多
The valence bond structure of substitutional BCC based Ta-W alloys is studied using characteristic crystal (CC) theory. This theory is based on cluster statistics of random alloys. By studying the correlativity betw...The valence bond structure of substitutional BCC based Ta-W alloys is studied using characteristic crystal (CC) theory. This theory is based on cluster statistics of random alloys. By studying the correlativity between energy and volume of the CC in Ta- W alloys, the valence bond structure of CC is determined by the energy and shape method. Then, following additive law of CC, the valence bond structure of Ta-W alloys is calculated. It is found that the outer shell valence electronic distribution of Ta-W Mloys shows a continuous change in the whole composition range. The covalent electrons ec (dc, sc, and pc) increase, whereas near free electrons ef decrease with increasing W concentration. The bond length and single-bond radius decrease, whereas bond energy and bond valence increase with increasing W concentration. The mechanism of solid solution strengthening of Ta-W alloys is analyzed based on their valence bond structure.展开更多
The relationship between bond valence and bond covalency in RMn2O5 (R = La, Pr, Nd.Sm, Eu) has been investigated by a semiempirical method. This method is the generalization of thedielectric description theory of Phil...The relationship between bond valence and bond covalency in RMn2O5 (R = La, Pr, Nd.Sm, Eu) has been investigated by a semiempirical method. This method is the generalization of thedielectric description theory of Phillips. Van Vechten, Levine and Tanaka scheme. The resultsindicate that larger valences usually result in higher bond covalencies, in good agreement with thepoint that the excess charge in the bonding region is the origin of formation of bond covalency.Other factors, such as oxidation state of elements, only make a small contribution to bondcovalency.展开更多
Bond valence method illustrates the relation between valence and length of a particular bond type. This theory has been used to predict structure information, but the effect is very limited. In this paper, two indexes...Bond valence method illustrates the relation between valence and length of a particular bond type. This theory has been used to predict structure information, but the effect is very limited. In this paper, two indexes, i.e., global instability index(GII) and bond strain index(BSI), are adopted as a judgment of a search-match program for prediction. The results show that with GII and BSI combined as judgment, the predicted atom positions are very close to real ones. The mechanism and validity of this searching program are also discussed. The GII & BSI distribution contour map reveals that the predicted function is a reflection of exponential feature of bond valence formula. This combined searching method may be integrated with other structure-determination method, and may be helpful in refining and testifying light atom positions.展开更多
Introduction There has been a very significarnt resurgence of interest in ab initio valence bond calculations recently. This is because the VB calculation based on nonorthogonal basis can provide intuitive understandi...Introduction There has been a very significarnt resurgence of interest in ab initio valence bond calculations recently. This is because the VB calculation based on nonorthogonal basis can provide intuitive understanding about many very important phenomena in chemistry. However, practical calculation based on nonorthogonal basis is still a great challenge even to deal with a quite small system due to the well-known N! (or展开更多
The influence of the lone pair of electrons in thallium complexes is analyzed using the bond valence sum method.Bond length data for metal-organic Tl complexes were obtained from the Cambridge Structural Database(CSD...The influence of the lone pair of electrons in thallium complexes is analyzed using the bond valence sum method.Bond length data for metal-organic Tl complexes were obtained from the Cambridge Structural Database(CSD),and problems with searching the CSD file for Tl complexes are discussed.The recommended R0 values for Tl(Ⅰ)-O of 2.162 ,Tl(Ⅲ)-O of 2.016 ,Tl(Ⅰ)-N of 2.286 ?,and for Tl(Ⅲ)-N of 2.014 used with b = 0.37 were derived from analyses of homoleptic Tl-O,Tl-N,and heteroleptic Tl-O and-N metal organic complexes.These R0 values can be used to assign correctly the oxidation state of Tl in complexes containing any combination of Tl-O or Tl-N bonds.Examples of questionable oxidation states for Tl complexes are given.The R0 value for Tl(Ⅲ)-Cl of 2.300 was also determined.展开更多
By using the Lagrange's intermediate value theorem,it is derived mathematically that the structur-al distortion of a coordination polyhedron may lead to an increase in bond-valence sum of the cen-tral atom of ion ...By using the Lagrange's intermediate value theorem,it is derived mathematically that the structur-al distortion of a coordination polyhedron may lead to an increase in bond-valence sum of the cen-tral atom of ion .The applicabilities of the bond-valence model are discussed in the following two cases:the modeling of crystal structure ,and the indication of distortion degree of a coordination polyhedron.Also it is shown that a distorted polyhedron should be in favor of a longer average bond length or a smaller coordination number.展开更多
We present here a systematic theoretical study to explore the underlying mechanisms of the H abstraction reaction from methane. Various abstracting agents have been modeled, using oxygen radicals and a set of high val...We present here a systematic theoretical study to explore the underlying mechanisms of the H abstraction reaction from methane. Various abstracting agents have been modeled, using oxygen radicals and a set of high valence metal oxo compounds. Our calculations demonstrate that although H abstraction from CH3-H by metal oxoes can be satisfactorily fitted into the Polanyi correlation on the basis of oxygen radicals, the mechanisms behind are significantly different. The frontier orbital analyses show that there are three electrons and three active orbitals (3e, 3o) involved in H abstraction by oxygen radicals; whereas an additional orbital of pi(M-O)* is involved in H abstraction by M = O, resulting in a (4e, 4o) interaction. In terms of valence bond state correlation diagram, we find that H abstraction by a metal oxo may benefit from the contribution of ionic resonance structures, which could compensate the penalty of opening the M-O pbond. We believe that these findings can help to design more effective catalysts for the activation of light alkanes. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B. V. and Science Press. All rights reserved.展开更多
The ideal formula for chevkinite can be expressed as A4BC2D2Si4O22. It is important to determine the valence state and site occupation proportions for Fe among the B, C, and D octahedral sites as it may help to identi...The ideal formula for chevkinite can be expressed as A4BC2D2Si4O22. It is important to determine the valence state and site occupation proportions for Fe among the B, C, and D octahedral sites as it may help to identify different species in the chevkinite group. Non-metamict chevkinite-(Ce) from Mianxi alkali feldspar-granite, Sichuan Province, China, was investigated using Moessbauer spectroscopy. The Fe^3+/∑Fe ratio was 39.2%. A significant increase of Fe^3+ occured during metamictization and annealing for chevkinite-group minerals. In metamict samples Fe tended to lower coordination, According to the correlation between bond length and isomer shift (IS), the quadrupole doublets with IS = 1.10 and 0.94 mm·s^-1 can be assigned to Fe^2+ in the B and C octahedral sites, respectively. Based on the correlation between octahedral distortion and quadrupole splitting (QS), the quadrupole doublets with QS = 0.86 and 0.77 mm·s^-1 can be assigned to Fe^3+ in the C and D sites, respectively. The simplified formula can be revised as: Ce4Fe^2+ (Ti, Fe^2+, Fe^3+ )2(Ti, Fe^3+ )2Si4(O,OH)22. It indicated that the non-metamict chevkinite-(Ce) belonged to Fe^2+ end member of the chevkinite group because Fe^2+ was the predominant component in the B site.展开更多
A method, which can predict the valence band offsets at strained layer heterojunctions under different strain situations only by calculating band structures and deformation parameters of the bulk materials, is suggest...A method, which can predict the valence band offsets at strained layer heterojunctions under different strain situations only by calculating band structures and deformation parameters of the bulk materials, is suggested. The applicability of this method is verified by calculation of the valence band offsets at strained layer heterojuntions ,such as InP/InAs, InP/GaP, GaAs/InAs, GaP/GaAs and AlAs/InAs with various strain conditions.展开更多
A new mixed-valence heterometal cluster Mo8VW2VIO26(C5H5N)8·2H2O has been synthesized under solvothermal conditions and characterized by X-ray single-crystal diffraction, IR, UV-vis and XPS spectroscopy. The ti...A new mixed-valence heterometal cluster Mo8VW2VIO26(C5H5N)8·2H2O has been synthesized under solvothermal conditions and characterized by X-ray single-crystal diffraction, IR, UV-vis and XPS spectroscopy. The title compound crystallizes in the triclinic system, space group P1 with a = 11.708(3), b = 12.018(4), c = 13.316(4) A, α = 112.184(4), β = 97.844(4), γ = 110.043(3)°, V = 1551.9(8) A3 and Z = 1 at 293(2) K. The final full-matrix least-squares refinement converged to R = 0.0414 for 4460 observed unique reflections with I 〉 2σ(I) and w R = 0.1290 for all data(5352) and S = 1.015. In addition, its thermal stability and fluorescent property have also been investigated.展开更多
A novel method was proposed to calculate the crystal morphology (or growth habit) on the basis of chemical bond analysis. All constituent chemical bonds were distinguished as relevant and independent bonds according t...A novel method was proposed to calculate the crystal morphology (or growth habit) on the basis of chemical bond analysis. All constituent chemical bonds were distinguished as relevant and independent bonds according to their variations during the crystallization process. By employing the current method, the influence of specific growth conditions on the crystal morphology can be considered in the structure analysis process. The ideal morphologies of both KDP (KH2PO4) and ADP (NH4H2PO4) crystals were calculated and compared with our obtained crystallites at room temperature, which validates the present calculation method very well.展开更多
The concept of resonance-assisted hydrogen bonds(RAHBs)highlights the synergistic interplay between theπ-resonance and hydrogen bonding interactions.This concept has been well-accepted in academia and is widely used ...The concept of resonance-assisted hydrogen bonds(RAHBs)highlights the synergistic interplay between theπ-resonance and hydrogen bonding interactions.This concept has been well-accepted in academia and is widely used in practice.However,it has been argued that the seemingly enhanced intramolecular hydrogen bonding(IMHB)in unsaturated compounds may simply be a result of the constraints imposed by theσ-skeleton framework.Thus,it is crucial to estimate the strength of IMHBs.In this work,we used two approaches to probe the resonance effect and estimate the strength of the IMHBs in the two exemplary cases of the enol forms of acetylacetone and o-hydroxyacetophenone.One approach is the block-localized wavefunction(BLW)method,which is a variant of the ab initio valence bond(VB)theory.Using this approach,it is possible to derive the geometries and energetics with resonance shut down.The other approach is Edmiston’s truncated localized molecular orbital(TLMO)technique,which monitors the energy changes by removing the delocalization tails from localized molecular orbitals.The integrated BLW and TLMO studies confirmed that the hydrogen bonding in these two molecules is indeed enhanced byπ-resonance,and that this enhancement is not a result ofσconstraints.展开更多
The detection by the author of real magnetic charges, as well as true antielectrons in of atomic structures allowed him to establish that atomic shells, as well as shells of nucleons are electromagnetic, and not elect...The detection by the author of real magnetic charges, as well as true antielectrons in of atomic structures allowed him to establish that atomic shells, as well as shells of nucleons are electromagnetic, and not electronic. Namely electromagnetic shells are the sources of gravitational field which is the vortex electromagnetic field. The elementary source of gravitational field is the electromagnetic quasiparticle (S-Graviton) which consists of two coupled dipoles (the magnetic and electric) rotating in antiphase in the same atomic or nucleonic orbit. Electrons in atomic shells are rigidly embedded in the compositions of S-Gravitons and, as a rule, cannot individually participate, for example, in processes of interatomic chemical bonding. Depending on the vector conditions the gravitational fields can be both paragravitational (PGF) so and ferrogravitational (FGF). The overwhelming number of atomic shells and all shells nucleons emit PGF. Between the masses (bodies, atoms, nucleons, etc.) emitting of PGF is realized a force of gravitational “Dark energy” pressing masses to each other. It is the compression of masses by forces of the gravitational “Dark energy” that lies at basis Physics of chemical bond. Depending on implementation in atoms of the effects intra-atomic gravitational shielding/lensing (IAGS/L) discovered and investigated by the author, the gravitational interatomic bonding mechanisms are divided into two groups: non-covalent bonds (IAGS effect) and covalent bonds (IAGL effect). Within the framework of the gravitational bond mechanism of the latter group which is implemented with participation paragravitational orbitals, such chemical concept as valence acquires a real physical meaning. The replacing the erroneous electronic concept of chemical bonding by the gravitational concept implies replacing the notion “electronegativity” of element by the notion the “gravitational activity” while maintaining existing quantitative ability of atoms in molecules to attract atoms of other elements.展开更多
The present paper covers a kind of localized orbitals, namely bond-distorted or-bitals in the valence bond calculation. Test calculation on benzene is reported. The results indicate that Dewar structures are important...The present paper covers a kind of localized orbitals, namely bond-distorted or-bitals in the valence bond calculation. Test calculation on benzene is reported. The results indicate that Dewar structures are important in the description of benzene.展开更多
基金supported by the National Natural Science Foundation of China(No.50271085).
文摘On the basis of energy and shape method for the determination of the valence bond ( VB ) structures of crystal, the valence bond structure of titanium is redetermined at room temperature and calculated in the whole temperature range of 0-1943K. The outer shell electronic distribution of Ti is ec^29907. (sc^0.4980 + dc^2.4927) ef^1.0098 in crystal. The temperature dependences of the VB structures of hcp and bcc phases are the same. The VB structures of hcp and bcc phases monotonically increase or decrease with the increase in temperature, but show discontinuous changes at the phase-transformation temperature 1155K.
文摘Ions or molecules are said to be isoelectronic if they are composed of different elements but have the same number of electrons, the same number of covalent bonds and the same structure. This criterion is unfortunately not sufficient to ensure that a chemical structure is a valid chemical compound. In a previous article, a procedure has been described to draw 2D valid structural formulas: the even-odd rule. This rule has been applied first to single-bonded molecules then to single-charged single-bonded ions. It covers hypovalent, hypervalent or classic Lewis’ octet compounds. The funding principle of the even-odd rule is that each atom of the compound possesses an outer-shell filled only with pairs of electrons. The application of this rule guarantees validity of any single-covalent-bond chemical structure. In the present paper, this even-odd rule and its electron-pair criterion are checked for coherence with an effective-valence isoelectronic rule using numerous known compounds having single-covalent-bond connections. The test addresses Lewis’ octet ions or molecules as well as hypovalent and hypervalent compounds. The article concludes that the even-odd rule and the effective-valence isoelectronicity rule are coherent for known single-covalent-bond chemical compounds.
基金supported by Xiangtan University Doctor Research Foundation(GrantNo.08QDZ32)
文摘The valence bond structure of substitutional BCC based Ta-W alloys is studied using characteristic crystal (CC) theory. This theory is based on cluster statistics of random alloys. By studying the correlativity between energy and volume of the CC in Ta- W alloys, the valence bond structure of CC is determined by the energy and shape method. Then, following additive law of CC, the valence bond structure of Ta-W alloys is calculated. It is found that the outer shell valence electronic distribution of Ta-W Mloys shows a continuous change in the whole composition range. The covalent electrons ec (dc, sc, and pc) increase, whereas near free electrons ef decrease with increasing W concentration. The bond length and single-bond radius decrease, whereas bond energy and bond valence increase with increasing W concentration. The mechanism of solid solution strengthening of Ta-W alloys is analyzed based on their valence bond structure.
文摘The relationship between bond valence and bond covalency in RMn2O5 (R = La, Pr, Nd.Sm, Eu) has been investigated by a semiempirical method. This method is the generalization of thedielectric description theory of Phillips. Van Vechten, Levine and Tanaka scheme. The resultsindicate that larger valences usually result in higher bond covalencies, in good agreement with thepoint that the excess charge in the bonding region is the origin of formation of bond covalency.Other factors, such as oxidation state of elements, only make a small contribution to bondcovalency.
基金Project supported by the National Natural Science Foundation of China(Grant No.51272027)
文摘Bond valence method illustrates the relation between valence and length of a particular bond type. This theory has been used to predict structure information, but the effect is very limited. In this paper, two indexes, i.e., global instability index(GII) and bond strain index(BSI), are adopted as a judgment of a search-match program for prediction. The results show that with GII and BSI combined as judgment, the predicted atom positions are very close to real ones. The mechanism and validity of this searching program are also discussed. The GII & BSI distribution contour map reveals that the predicted function is a reflection of exponential feature of bond valence formula. This combined searching method may be integrated with other structure-determination method, and may be helpful in refining and testifying light atom positions.
文摘Introduction There has been a very significarnt resurgence of interest in ab initio valence bond calculations recently. This is because the VB calculation based on nonorthogonal basis can provide intuitive understanding about many very important phenomena in chemistry. However, practical calculation based on nonorthogonal basis is still a great challenge even to deal with a quite small system due to the well-known N! (or
文摘The influence of the lone pair of electrons in thallium complexes is analyzed using the bond valence sum method.Bond length data for metal-organic Tl complexes were obtained from the Cambridge Structural Database(CSD),and problems with searching the CSD file for Tl complexes are discussed.The recommended R0 values for Tl(Ⅰ)-O of 2.162 ,Tl(Ⅲ)-O of 2.016 ,Tl(Ⅰ)-N of 2.286 ?,and for Tl(Ⅲ)-N of 2.014 used with b = 0.37 were derived from analyses of homoleptic Tl-O,Tl-N,and heteroleptic Tl-O and-N metal organic complexes.These R0 values can be used to assign correctly the oxidation state of Tl in complexes containing any combination of Tl-O or Tl-N bonds.Examples of questionable oxidation states for Tl complexes are given.The R0 value for Tl(Ⅲ)-Cl of 2.300 was also determined.
文摘By using the Lagrange's intermediate value theorem,it is derived mathematically that the structur-al distortion of a coordination polyhedron may lead to an increase in bond-valence sum of the cen-tral atom of ion .The applicabilities of the bond-valence model are discussed in the following two cases:the modeling of crystal structure ,and the indication of distortion degree of a coordination polyhedron.Also it is shown that a distorted polyhedron should be in favor of a longer average bond length or a smaller coordination number.
基金financial support from the National Nature Science Foundation of China (21133004,21373167,21573178)the Fundamental Research Funds for the Central Universities (20720160046)the Program for Innovative Research Team in Chinese Universities (IRT_14R31)
文摘We present here a systematic theoretical study to explore the underlying mechanisms of the H abstraction reaction from methane. Various abstracting agents have been modeled, using oxygen radicals and a set of high valence metal oxo compounds. Our calculations demonstrate that although H abstraction from CH3-H by metal oxoes can be satisfactorily fitted into the Polanyi correlation on the basis of oxygen radicals, the mechanisms behind are significantly different. The frontier orbital analyses show that there are three electrons and three active orbitals (3e, 3o) involved in H abstraction by oxygen radicals; whereas an additional orbital of pi(M-O)* is involved in H abstraction by M = O, resulting in a (4e, 4o) interaction. In terms of valence bond state correlation diagram, we find that H abstraction by a metal oxo may benefit from the contribution of ionic resonance structures, which could compensate the penalty of opening the M-O pbond. We believe that these findings can help to design more effective catalysts for the activation of light alkanes. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B. V. and Science Press. All rights reserved.
基金Project supported by the National Natural Science Foundation of China (40572029)
文摘The ideal formula for chevkinite can be expressed as A4BC2D2Si4O22. It is important to determine the valence state and site occupation proportions for Fe among the B, C, and D octahedral sites as it may help to identify different species in the chevkinite group. Non-metamict chevkinite-(Ce) from Mianxi alkali feldspar-granite, Sichuan Province, China, was investigated using Moessbauer spectroscopy. The Fe^3+/∑Fe ratio was 39.2%. A significant increase of Fe^3+ occured during metamictization and annealing for chevkinite-group minerals. In metamict samples Fe tended to lower coordination, According to the correlation between bond length and isomer shift (IS), the quadrupole doublets with IS = 1.10 and 0.94 mm·s^-1 can be assigned to Fe^2+ in the B and C octahedral sites, respectively. Based on the correlation between octahedral distortion and quadrupole splitting (QS), the quadrupole doublets with QS = 0.86 and 0.77 mm·s^-1 can be assigned to Fe^3+ in the C and D sites, respectively. The simplified formula can be revised as: Ce4Fe^2+ (Ti, Fe^2+, Fe^3+ )2(Ti, Fe^3+ )2Si4(O,OH)22. It indicated that the non-metamict chevkinite-(Ce) belonged to Fe^2+ end member of the chevkinite group because Fe^2+ was the predominant component in the B site.
文摘A method, which can predict the valence band offsets at strained layer heterojunctions under different strain situations only by calculating band structures and deformation parameters of the bulk materials, is suggested. The applicability of this method is verified by calculation of the valence band offsets at strained layer heterojuntions ,such as InP/InAs, InP/GaP, GaAs/InAs, GaP/GaAs and AlAs/InAs with various strain conditions.
基金supported by the National Natural Science Foundation of China(No.21003125,21073190)
文摘A new mixed-valence heterometal cluster Mo8VW2VIO26(C5H5N)8·2H2O has been synthesized under solvothermal conditions and characterized by X-ray single-crystal diffraction, IR, UV-vis and XPS spectroscopy. The title compound crystallizes in the triclinic system, space group P1 with a = 11.708(3), b = 12.018(4), c = 13.316(4) A, α = 112.184(4), β = 97.844(4), γ = 110.043(3)°, V = 1551.9(8) A3 and Z = 1 at 293(2) K. The final full-matrix least-squares refinement converged to R = 0.0414 for 4460 observed unique reflections with I 〉 2σ(I) and w R = 0.1290 for all data(5352) and S = 1.015. In addition, its thermal stability and fluorescent property have also been investigated.
基金Project supported by the National Natural Science Foundation of China (20471012), Foundation for the Author of National Excellent Doctoral Dissertation of China (200322), Research Fund for the Doctoral Program of Higher Education (20040141004) and Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry
文摘A novel method was proposed to calculate the crystal morphology (or growth habit) on the basis of chemical bond analysis. All constituent chemical bonds were distinguished as relevant and independent bonds according to their variations during the crystallization process. By employing the current method, the influence of specific growth conditions on the crystal morphology can be considered in the structure analysis process. The ideal morphologies of both KDP (KH2PO4) and ADP (NH4H2PO4) crystals were calculated and compared with our obtained crystallites at room temperature, which validates the present calculation method very well.
文摘The concept of resonance-assisted hydrogen bonds(RAHBs)highlights the synergistic interplay between theπ-resonance and hydrogen bonding interactions.This concept has been well-accepted in academia and is widely used in practice.However,it has been argued that the seemingly enhanced intramolecular hydrogen bonding(IMHB)in unsaturated compounds may simply be a result of the constraints imposed by theσ-skeleton framework.Thus,it is crucial to estimate the strength of IMHBs.In this work,we used two approaches to probe the resonance effect and estimate the strength of the IMHBs in the two exemplary cases of the enol forms of acetylacetone and o-hydroxyacetophenone.One approach is the block-localized wavefunction(BLW)method,which is a variant of the ab initio valence bond(VB)theory.Using this approach,it is possible to derive the geometries and energetics with resonance shut down.The other approach is Edmiston’s truncated localized molecular orbital(TLMO)technique,which monitors the energy changes by removing the delocalization tails from localized molecular orbitals.The integrated BLW and TLMO studies confirmed that the hydrogen bonding in these two molecules is indeed enhanced byπ-resonance,and that this enhancement is not a result ofσconstraints.
文摘The detection by the author of real magnetic charges, as well as true antielectrons in of atomic structures allowed him to establish that atomic shells, as well as shells of nucleons are electromagnetic, and not electronic. Namely electromagnetic shells are the sources of gravitational field which is the vortex electromagnetic field. The elementary source of gravitational field is the electromagnetic quasiparticle (S-Graviton) which consists of two coupled dipoles (the magnetic and electric) rotating in antiphase in the same atomic or nucleonic orbit. Electrons in atomic shells are rigidly embedded in the compositions of S-Gravitons and, as a rule, cannot individually participate, for example, in processes of interatomic chemical bonding. Depending on the vector conditions the gravitational fields can be both paragravitational (PGF) so and ferrogravitational (FGF). The overwhelming number of atomic shells and all shells nucleons emit PGF. Between the masses (bodies, atoms, nucleons, etc.) emitting of PGF is realized a force of gravitational “Dark energy” pressing masses to each other. It is the compression of masses by forces of the gravitational “Dark energy” that lies at basis Physics of chemical bond. Depending on implementation in atoms of the effects intra-atomic gravitational shielding/lensing (IAGS/L) discovered and investigated by the author, the gravitational interatomic bonding mechanisms are divided into two groups: non-covalent bonds (IAGS effect) and covalent bonds (IAGL effect). Within the framework of the gravitational bond mechanism of the latter group which is implemented with participation paragravitational orbitals, such chemical concept as valence acquires a real physical meaning. The replacing the erroneous electronic concept of chemical bonding by the gravitational concept implies replacing the notion “electronegativity” of element by the notion the “gravitational activity” while maintaining existing quantitative ability of atoms in molecules to attract atoms of other elements.
基金A state major key project for basic researches supported by the National Natural Science Foundation of China
文摘The present paper covers a kind of localized orbitals, namely bond-distorted or-bitals in the valence bond calculation. Test calculation on benzene is reported. The results indicate that Dewar structures are important in the description of benzene.