A new coarse-to-fine strategy was proposed for nonrigid registration of computed tomography(CT) and magnetic resonance(MR) images of a liver.This hierarchical framework consisted of an affine transformation and a B-sp...A new coarse-to-fine strategy was proposed for nonrigid registration of computed tomography(CT) and magnetic resonance(MR) images of a liver.This hierarchical framework consisted of an affine transformation and a B-splines free-form deformation(FFD).The affine transformation performed a rough registration targeting the mismatch between the CT and MR images.The B-splines FFD transformation performed a finer registration by correcting local motion deformation.In the registration algorithm,the normalized mutual information(NMI) was used as similarity measure,and the limited memory Broyden-Fletcher- Goldfarb-Shannon(L-BFGS) optimization method was applied for optimization process.The algorithm was applied to the fully automated registration of liver CT and MR images in three subjects.The results demonstrate that the proposed method not only significantly improves the registration accuracy but also reduces the running time,which is effective and efficient for nonrigid registration.展开更多
An intensity-based non-rigid registration algorithm is discussed, which uses Gaussian smoothing to constrain the transformation to be smooth, and thus preserves the topology of images. In view of the insufficiency of ...An intensity-based non-rigid registration algorithm is discussed, which uses Gaussian smoothing to constrain the transformation to be smooth, and thus preserves the topology of images. In view of the insufficiency of the uniform Gaussian filtering of the deformation field, an automatic and accurate non-rigid image registration method based on B-splines approximation is proposed. The regularization strategy is adopted by using multi-level B-splines approximation to regularize the displacement fields in a coarse-to-fine manner. Moreover, it assigns the different weights to the estimated displacements according to their reliabilities. In this way, the level of regularity can be adapted locally. Experiments were performed on both synthetic and real medical images of brain, and the results show that the proposed method improves the registration accuracy and robustness.展开更多
The iterative closest point(ICP)algorithm has the advantages of high accuracy and fast speed for point set registration,but it performs poorly when the point set has a large number of noisy outliers.To solve this prob...The iterative closest point(ICP)algorithm has the advantages of high accuracy and fast speed for point set registration,but it performs poorly when the point set has a large number of noisy outliers.To solve this problem,we propose a new affine registration algorithm based on correntropy which works well in the affine registration of point sets with outliers.Firstly,we substitute the traditional measure of least squares with a maximum correntropy criterion to build a new registration model,which can avoid the influence of outliers.To maximize the objective function,we then propose a robust affine ICP algorithm.At each iteration of this new algorithm,we set up the index mapping of two point sets according to the known transformation,and then compute the closed-form solution of the new transformation according to the known index mapping.Similar to the traditional ICP algorithm,our algorithm converges to a local maximum monotonously for any given initial value.Finally,the robustness and high efficiency of affine ICP algorithm based on correntropy are demonstrated by 2D and 3D point set registration experiments.展开更多
In this study,a non-tensor product B-spline algorithm is applied to the search space of the registration process,and a new method of image non-rigid registration is proposed.The tensor product B-spline is a function d...In this study,a non-tensor product B-spline algorithm is applied to the search space of the registration process,and a new method of image non-rigid registration is proposed.The tensor product B-spline is a function defined in the two directions of x and y,while the non-tensor product B-spline S^(1/2)(Δ_(mn)^((2)))is defined in four directions on the 2-type triangulation.For certain problems,using non-tensor product B-splines to describe the non-rigid deformation of an image can more accurately extract the four-directional information of the image,thereby describing the global or local non-rigid deformation of the image in more directions.Indeed,it provides a method to solve the problem of image deformation in multiple directions.In addition,the region of interest of medical images is irregular,and usually no value exists on the boundary triangle.The value of the basis function of the non-tensor product B-spline on the boundary triangle is only 0.The algorithm process is optimized.The algorithm performs completely automatic non-rigid registration of computed tomography and magnetic resonance imaging images of patients.In particular,this study compares the performance of the proposed algorithm with the tensor product B-spline registration algorithm.The results elucidate that the proposed algorithm clearly improves the accuracy.展开更多
Building detection in very high resolution (VHR) images is crucial for mapping and analysing urban environments. Since buildings are elevated objects, elevation data need to be integrated with images for reliable dete...Building detection in very high resolution (VHR) images is crucial for mapping and analysing urban environments. Since buildings are elevated objects, elevation data need to be integrated with images for reliable detection. This process requires two critical steps: optical-elevation data co-registration and aboveground elevation calculation. These two steps are still challenging to some extent. Therefore, this paper introduces optical-elevation data co-registration and normalization techniques for generating a dataset that facilitates elevation-based building detection. For achieving accurate co-registration, a dense set of stereo-based elevations is generated and co-registered to their relevant image based on their corresponding image locations. To normalize these co-registered elevations, the bare-earth elevations are detected based on classification information of some terrain-level features after achieving the image co-registration. The developed method was executed and validated. After implementation, 80% overall-quality of detection result was achieved with 94% correct detection. Together, the developed techniques successfully facilitate the incorporation of stereo-based elevations for detecting buildings in VHR remote sensing images.展开更多
Accurate registration of chest radiographs plays an increasingly important role in medical applications.However, most current intensity-based registration methods rely on the assumption of intensity conservation that ...Accurate registration of chest radiographs plays an increasingly important role in medical applications.However, most current intensity-based registration methods rely on the assumption of intensity conservation that is not suitable for alignment of chest radiographs. In this study, we propose a novel algorithm to match chest radiographs, for which the conventional residual complexity(RC) is modified as the similarity measure and the cubic B-spline transformation is adopted for displacement estimation. The modified similarity measure is allowed to incorporate the neighborhood influence into variation of intensity in a justified manner of the weight, while the transformation is implemented with a registration framework of pyramid structure. The results show that the proposed algorithm is more accurate in registration of chest radiographs, compared with some widely used methods such as the sum-of-squared-differences(SSD), correlation coefficient(CC) and mutual information(MI)algorithms, as well as the conventional RC approaches.展开更多
基金Project(61240010)supported by the National Natural Science Foundation of ChinaProject(20070007070)supported by Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘A new coarse-to-fine strategy was proposed for nonrigid registration of computed tomography(CT) and magnetic resonance(MR) images of a liver.This hierarchical framework consisted of an affine transformation and a B-splines free-form deformation(FFD).The affine transformation performed a rough registration targeting the mismatch between the CT and MR images.The B-splines FFD transformation performed a finer registration by correcting local motion deformation.In the registration algorithm,the normalized mutual information(NMI) was used as similarity measure,and the limited memory Broyden-Fletcher- Goldfarb-Shannon(L-BFGS) optimization method was applied for optimization process.The algorithm was applied to the fully automated registration of liver CT and MR images in three subjects.The results demonstrate that the proposed method not only significantly improves the registration accuracy but also reduces the running time,which is effective and efficient for nonrigid registration.
基金Supported by National Natural Science Foundation of China (No60373061)Joint Programof National Natural Science Foundation of ChinaGeneral Administration of Civil Aviation of China (No60672168)
文摘An intensity-based non-rigid registration algorithm is discussed, which uses Gaussian smoothing to constrain the transformation to be smooth, and thus preserves the topology of images. In view of the insufficiency of the uniform Gaussian filtering of the deformation field, an automatic and accurate non-rigid image registration method based on B-splines approximation is proposed. The regularization strategy is adopted by using multi-level B-splines approximation to regularize the displacement fields in a coarse-to-fine manner. Moreover, it assigns the different weights to the estimated displacements according to their reliabilities. In this way, the level of regularity can be adapted locally. Experiments were performed on both synthetic and real medical images of brain, and the results show that the proposed method improves the registration accuracy and robustness.
基金supported in part by the National Natural Science Foundation of China(61627811,61573274,61673126,U1701261)
文摘The iterative closest point(ICP)algorithm has the advantages of high accuracy and fast speed for point set registration,but it performs poorly when the point set has a large number of noisy outliers.To solve this problem,we propose a new affine registration algorithm based on correntropy which works well in the affine registration of point sets with outliers.Firstly,we substitute the traditional measure of least squares with a maximum correntropy criterion to build a new registration model,which can avoid the influence of outliers.To maximize the objective function,we then propose a robust affine ICP algorithm.At each iteration of this new algorithm,we set up the index mapping of two point sets according to the known transformation,and then compute the closed-form solution of the new transformation according to the known index mapping.Similar to the traditional ICP algorithm,our algorithm converges to a local maximum monotonously for any given initial value.Finally,the robustness and high efficiency of affine ICP algorithm based on correntropy are demonstrated by 2D and 3D point set registration experiments.
基金This research was funded by National Natural Science Foundation of China,No.61702184Ministry of Education Production University Cooperation Education Project,No.201802305012Tangshan Innovation Team Project,No.18130209 B.
文摘In this study,a non-tensor product B-spline algorithm is applied to the search space of the registration process,and a new method of image non-rigid registration is proposed.The tensor product B-spline is a function defined in the two directions of x and y,while the non-tensor product B-spline S^(1/2)(Δ_(mn)^((2)))is defined in four directions on the 2-type triangulation.For certain problems,using non-tensor product B-splines to describe the non-rigid deformation of an image can more accurately extract the four-directional information of the image,thereby describing the global or local non-rigid deformation of the image in more directions.Indeed,it provides a method to solve the problem of image deformation in multiple directions.In addition,the region of interest of medical images is irregular,and usually no value exists on the boundary triangle.The value of the basis function of the non-tensor product B-spline on the boundary triangle is only 0.The algorithm process is optimized.The algorithm performs completely automatic non-rigid registration of computed tomography and magnetic resonance imaging images of patients.In particular,this study compares the performance of the proposed algorithm with the tensor product B-spline registration algorithm.The results elucidate that the proposed algorithm clearly improves the accuracy.
文摘Building detection in very high resolution (VHR) images is crucial for mapping and analysing urban environments. Since buildings are elevated objects, elevation data need to be integrated with images for reliable detection. This process requires two critical steps: optical-elevation data co-registration and aboveground elevation calculation. These two steps are still challenging to some extent. Therefore, this paper introduces optical-elevation data co-registration and normalization techniques for generating a dataset that facilitates elevation-based building detection. For achieving accurate co-registration, a dense set of stereo-based elevations is generated and co-registered to their relevant image based on their corresponding image locations. To normalize these co-registered elevations, the bare-earth elevations are detected based on classification information of some terrain-level features after achieving the image co-registration. The developed method was executed and validated. After implementation, 80% overall-quality of detection result was achieved with 94% correct detection. Together, the developed techniques successfully facilitate the incorporation of stereo-based elevations for detecting buildings in VHR remote sensing images.
基金the Fundamental Research Funds for the Central Universities of China(No.30918011104)the National Natural Science Foundation of China(Nos.61501241 and 61571230)+3 种基金the Natural Science Foundation of Jiangsu Province(No.BK20150792)the Foundation of Shandong Provincial Key Laboratory of Digital Medicine and Computer assisted Surgery(No.SDKL-DMCAS-2018-04)the China Postdoctoral Science Foundation(No.2015M570450)the Visiting Scholar Foundation of Key Laboratory of Biorheological Science and Technology(Chongqing University)of Ministry of Education(No.CQKLBST-2018-011)
文摘Accurate registration of chest radiographs plays an increasingly important role in medical applications.However, most current intensity-based registration methods rely on the assumption of intensity conservation that is not suitable for alignment of chest radiographs. In this study, we propose a novel algorithm to match chest radiographs, for which the conventional residual complexity(RC) is modified as the similarity measure and the cubic B-spline transformation is adopted for displacement estimation. The modified similarity measure is allowed to incorporate the neighborhood influence into variation of intensity in a justified manner of the weight, while the transformation is implemented with a registration framework of pyramid structure. The results show that the proposed algorithm is more accurate in registration of chest radiographs, compared with some widely used methods such as the sum-of-squared-differences(SSD), correlation coefficient(CC) and mutual information(MI)algorithms, as well as the conventional RC approaches.