Applying the distance function between two B-spline curves with respect to the L2 norm as the approximate error, we investigate the problem of approximate merging of two adjacent B-spline curves into one B-spline curv...Applying the distance function between two B-spline curves with respect to the L2 norm as the approximate error, we investigate the problem of approximate merging of two adjacent B-spline curves into one B-spline curve. Then this method can be easily extended to the approximate merging problem of multiple B-spline curves and of two adjacent surfaces. After minimizing the approximate error between curves or surfaces, the approximate merging problem can be transformed into equations solving. We express both the new control points and the precise error of approximation explicitly in matrix form. Based on homogeneous coordinates and quadratic programming, we also introduce a new framework for approximate merging of two adjacent NURBS curves. Finally, several numerical examples demonstrate the effectiveness and validity of the algorithm.展开更多
A method to reconstruct symmetric B-spline curves and surfaces is presented. The symmetry property is realized by using symmetric knot vector and symmetric control points. Firstly, data points are divided into two par...A method to reconstruct symmetric B-spline curves and surfaces is presented. The symmetry property is realized by using symmetric knot vector and symmetric control points. Firstly, data points are divided into two parts based on the symmetry axis or symmetry plane extracted from data points. Then the divided data points are parameterized and a symmetric knot vector is selected in order to get symmetric B-spline basis functions. Constraint equations regarding the control points are deduced to keep the control points of the B-spline curve or surface to be symmetric with respect to the extracted symmetry axis or symmetry plane. Lastly, the constrained least squares fitting problem is solved with the Lagrange multiplier method. Two examples from industry are given to show that the proposed method is efficient, robust and able to meet the general engineering requirements.展开更多
In this paper, based on the idea of profit and loss modification, we presentthe iterative non-uniform B-spline curve and surface to settle a key problem in computeraided geometric design and reverse engineering, that ...In this paper, based on the idea of profit and loss modification, we presentthe iterative non-uniform B-spline curve and surface to settle a key problem in computeraided geometric design and reverse engineering, that is, constructing the curve (surface)fitting (interpolating) a given ordered point set without solving a linear system. We startwith a piece of initial non-uniform B-spline curve (surface) which takes the given point setas its control point set. Then by adjusting its control points gradually with iterative formula,we can get a group of non-uniform B-spline curves (surfaces) with gradually higherprecision. In this paper, using modern matrix theory, we strictly prove that the limit curve(surface) of the iteration interpolates the given point set. The non-uniform B-spline curves(surfaces) generated with the iteration have many advantages, such as satisfying theNURBS standard, having explicit expression, gaining locality, and convexity preserving,etc展开更多
Multiresolution modeling is becoming a powerful tool for fast display, and geometric data compression and transmission of complex shapes. Most of the existing literatures investigating the multiresolution for B-spline...Multiresolution modeling is becoming a powerful tool for fast display, and geometric data compression and transmission of complex shapes. Most of the existing literatures investigating the multiresolution for B-spline curves and surfaces are concentrated on open ones. In this paper, we focus on the multiresolution representations and editing of closed B-spline curves and surfaces using wavelets. A repetition approach is adopted for the multiresolution analysis of closed B-spline curves and surfaces. Since the closed curve or surface itself is periodic, it can overcome the drawback brought by the repetition method, i.e. introducing the discontinuities at the boundaries. Based on the models at different multiresolution levels, the multiresolution editing methods of closed curves and surfaces are introduced. Users can edit the overall shape of a closed one while preserving its details, or change its details without affecting its overall shape.展开更多
The problem of ship hull plate processing surface fairing with constraints based on B-spline is solved in this paper. The algorithm for B-spline curve fairing with constraints is one of the most common methods in plan...The problem of ship hull plate processing surface fairing with constraints based on B-spline is solved in this paper. The algorithm for B-spline curve fairing with constraints is one of the most common methods in plane curve fairing. The algorithm can be applied to global and local curve fairing. It can constrain the perturbation range of the control points and the shape variation of the curve, and get a better fairing result in plane curves. In this paper, a new fairing algorithm with constraints for curves and surfaces in space is presented. Then this method is applied to the experiments of ship hull plate processing surface. Finally numerical results are obtained to show the efficiency of this method.展开更多
In this paper, we estimate the partial derivative bounds for Non-Uniform Rational B-spline(NURBS) surfaces. Firstly, based on the formula of translating the product into sum of B-spline functions, discrete B-spline th...In this paper, we estimate the partial derivative bounds for Non-Uniform Rational B-spline(NURBS) surfaces. Firstly, based on the formula of translating the product into sum of B-spline functions, discrete B-spline theory and Dir function, some derivative bounds on NURBS curves are provided. Then, the derivative bounds on the magnitudes of NURBS surfaces are proposed by regarding a rational surface as the locus of a rational curve. Finally, some numerical examples are provided to elucidate how tight the bounds are.展开更多
We propose a method that automatically generates discrete bicubic G^1 continuous B-spline surfaces that interpolate the curve network of a ship huliform.First,the curves in the network are classified into two types;bo...We propose a method that automatically generates discrete bicubic G^1 continuous B-spline surfaces that interpolate the curve network of a ship huliform.First,the curves in the network are classified into two types;boundary curves and "reference curves",The boundary curves correspond to a set of rectangular(or triangular)topological type that can be representes with tensot-product (or degenerate)B-spline surface patches.Next,in the interior of the patches,surface fitting points and cross boundary derivatives are estimated from the reference curves by constructing "virtual"isoparametric curves.Finally,a discrete G^1 continuous B-spline surface is gencrated by a surface fitting algorithm.Several smooth ship hullform surfaces generated from curve networks corresponding to actual ship hullforms demonstrate the quality of the method.展开更多
This paper presents an automatic programming system on PC, it has also solved the technic problem in the combination of different curves or surfaces. The NURBS is applied to modeling and fitting complicated curves a...This paper presents an automatic programming system on PC, it has also solved the technic problem in the combination of different curves or surfaces. The NURBS is applied to modeling and fitting complicated curves and surfaces. The circular spline is combined with the NURBS to determine the cutter path in accordance with the features of the interpolation movement of NC machine tool. Three methods have been developed to solve the overcutting problems.展开更多
The new algorithms for finding B-Spline or Bezier curves and surfaces intersections using recursive subdivision techniques are presented, which use extrapolating acceleration technique, and have convergent precision o...The new algorithms for finding B-Spline or Bezier curves and surfaces intersections using recursive subdivision techniques are presented, which use extrapolating acceleration technique, and have convergent precision of order 2. Matrix method is used to subdivide the curves or surfaces which makes the subdivision more concise and intuitive. Dividing depths of Bezier curves and surfaces are used to subdivide the curves or surfaces adaptively Therefore the convergent precision and the computing efficiency of finding the intersections of curves and surfaces have been improved by the methods proposed in the paper.展开更多
基金Supported by the National Natural Science Foundation of China (60873111, 60933007)
文摘Applying the distance function between two B-spline curves with respect to the L2 norm as the approximate error, we investigate the problem of approximate merging of two adjacent B-spline curves into one B-spline curve. Then this method can be easily extended to the approximate merging problem of multiple B-spline curves and of two adjacent surfaces. After minimizing the approximate error between curves or surfaces, the approximate merging problem can be transformed into equations solving. We express both the new control points and the precise error of approximation explicitly in matrix form. Based on homogeneous coordinates and quadratic programming, we also introduce a new framework for approximate merging of two adjacent NURBS curves. Finally, several numerical examples demonstrate the effectiveness and validity of the algorithm.
基金This project is supported by National Natural Science Foundation of China(No.50575098).
文摘A method to reconstruct symmetric B-spline curves and surfaces is presented. The symmetry property is realized by using symmetric knot vector and symmetric control points. Firstly, data points are divided into two parts based on the symmetry axis or symmetry plane extracted from data points. Then the divided data points are parameterized and a symmetric knot vector is selected in order to get symmetric B-spline basis functions. Constraint equations regarding the control points are deduced to keep the control points of the B-spline curve or surface to be symmetric with respect to the extracted symmetry axis or symmetry plane. Lastly, the constrained least squares fitting problem is solved with the Lagrange multiplier method. Two examples from industry are given to show that the proposed method is efficient, robust and able to meet the general engineering requirements.
文摘In this paper, based on the idea of profit and loss modification, we presentthe iterative non-uniform B-spline curve and surface to settle a key problem in computeraided geometric design and reverse engineering, that is, constructing the curve (surface)fitting (interpolating) a given ordered point set without solving a linear system. We startwith a piece of initial non-uniform B-spline curve (surface) which takes the given point setas its control point set. Then by adjusting its control points gradually with iterative formula,we can get a group of non-uniform B-spline curves (surfaces) with gradually higherprecision. In this paper, using modern matrix theory, we strictly prove that the limit curve(surface) of the iteration interpolates the given point set. The non-uniform B-spline curves(surfaces) generated with the iteration have many advantages, such as satisfying theNURBS standard, having explicit expression, gaining locality, and convexity preserving,etc
文摘Multiresolution modeling is becoming a powerful tool for fast display, and geometric data compression and transmission of complex shapes. Most of the existing literatures investigating the multiresolution for B-spline curves and surfaces are concentrated on open ones. In this paper, we focus on the multiresolution representations and editing of closed B-spline curves and surfaces using wavelets. A repetition approach is adopted for the multiresolution analysis of closed B-spline curves and surfaces. Since the closed curve or surface itself is periodic, it can overcome the drawback brought by the repetition method, i.e. introducing the discontinuities at the boundaries. Based on the models at different multiresolution levels, the multiresolution editing methods of closed curves and surfaces are introduced. Users can edit the overall shape of a closed one while preserving its details, or change its details without affecting its overall shape.
基金Supported by Hi -tech Research and Development Program of China(No. 2001AA421200).
文摘The problem of ship hull plate processing surface fairing with constraints based on B-spline is solved in this paper. The algorithm for B-spline curve fairing with constraints is one of the most common methods in plane curve fairing. The algorithm can be applied to global and local curve fairing. It can constrain the perturbation range of the control points and the shape variation of the curve, and get a better fairing result in plane curves. In this paper, a new fairing algorithm with constraints for curves and surfaces in space is presented. Then this method is applied to the experiments of ship hull plate processing surface. Finally numerical results are obtained to show the efficiency of this method.
基金Supported by the National Natural Science Foundation of China(61572430,61303144)the Natural Science Foundation of Zhejiang Province(LY15F020002,LY16F020020)the Ningbo Natural Science Foundation(2016A610223)
文摘In this paper, we estimate the partial derivative bounds for Non-Uniform Rational B-spline(NURBS) surfaces. Firstly, based on the formula of translating the product into sum of B-spline functions, discrete B-spline theory and Dir function, some derivative bounds on NURBS curves are provided. Then, the derivative bounds on the magnitudes of NURBS surfaces are proposed by regarding a rational surface as the locus of a rational curve. Finally, some numerical examples are provided to elucidate how tight the bounds are.
文摘We propose a method that automatically generates discrete bicubic G^1 continuous B-spline surfaces that interpolate the curve network of a ship huliform.First,the curves in the network are classified into two types;boundary curves and "reference curves",The boundary curves correspond to a set of rectangular(or triangular)topological type that can be representes with tensot-product (or degenerate)B-spline surface patches.Next,in the interior of the patches,surface fitting points and cross boundary derivatives are estimated from the reference curves by constructing "virtual"isoparametric curves.Finally,a discrete G^1 continuous B-spline surface is gencrated by a surface fitting algorithm.Several smooth ship hullform surfaces generated from curve networks corresponding to actual ship hullforms demonstrate the quality of the method.
文摘This paper presents an automatic programming system on PC, it has also solved the technic problem in the combination of different curves or surfaces. The NURBS is applied to modeling and fitting complicated curves and surfaces. The circular spline is combined with the NURBS to determine the cutter path in accordance with the features of the interpolation movement of NC machine tool. Three methods have been developed to solve the overcutting problems.
文摘The new algorithms for finding B-Spline or Bezier curves and surfaces intersections using recursive subdivision techniques are presented, which use extrapolating acceleration technique, and have convergent precision of order 2. Matrix method is used to subdivide the curves or surfaces which makes the subdivision more concise and intuitive. Dividing depths of Bezier curves and surfaces are used to subdivide the curves or surfaces adaptively Therefore the convergent precision and the computing efficiency of finding the intersections of curves and surfaces have been improved by the methods proposed in the paper.