In order to improve the global search ability of biogeography-based optimization(BBO)algorithm in multi-threshold image segmentation,a multi-threshold image segmentation based on improved BBO algorithm is proposed.Whe...In order to improve the global search ability of biogeography-based optimization(BBO)algorithm in multi-threshold image segmentation,a multi-threshold image segmentation based on improved BBO algorithm is proposed.When using BBO algorithm to optimize threshold,firstly,the elitist selection operator is used to retain the optimal set of solutions.Secondly,a migration strategy based on fusion of good solution and pending solution is introduced to reduce premature convergence and invalid migration of traditional migration operations.Thirdly,to reduce the blindness of traditional mutation operations,a mutation operation through binary computation is created.Then,it is applied to the multi-threshold image segmentation of two-dimensional cross entropy.Finally,this method is used to segment the typical image and compared with two-dimensional multi-threshold segmentation based on particle swarm optimization algorithm and the two-dimensional multi-threshold image segmentation based on standard BBO algorithm.The experimental results show that the method has good convergence stability,it can effectively shorten the time of iteration,and the optimization performance is better than the standard BBO algorithm.展开更多
Short-term load forecasting is a basis of power system dispatching and operation. In order to improve the short term power load precision, a novel approach for short-term load forecasting is presented based on local m...Short-term load forecasting is a basis of power system dispatching and operation. In order to improve the short term power load precision, a novel approach for short-term load forecasting is presented based on local mean decomposition (LMD) and the radial basis function neural network method (RBFNN). Firstly, the decomposition of LMD method based on characteristics of load data then the decomposed data are respectively predicted by using the RBF network model and predicted by using the BBO-RBF network model. The simulation results show that the RBF network model optimized by using BBO algorithm is optimized in error performance index, and the prediction accuracy is higher and more effective.展开更多
基金Science and Technology Plan of Gansu Province(No.144NKCA040)
文摘In order to improve the global search ability of biogeography-based optimization(BBO)algorithm in multi-threshold image segmentation,a multi-threshold image segmentation based on improved BBO algorithm is proposed.When using BBO algorithm to optimize threshold,firstly,the elitist selection operator is used to retain the optimal set of solutions.Secondly,a migration strategy based on fusion of good solution and pending solution is introduced to reduce premature convergence and invalid migration of traditional migration operations.Thirdly,to reduce the blindness of traditional mutation operations,a mutation operation through binary computation is created.Then,it is applied to the multi-threshold image segmentation of two-dimensional cross entropy.Finally,this method is used to segment the typical image and compared with two-dimensional multi-threshold segmentation based on particle swarm optimization algorithm and the two-dimensional multi-threshold image segmentation based on standard BBO algorithm.The experimental results show that the method has good convergence stability,it can effectively shorten the time of iteration,and the optimization performance is better than the standard BBO algorithm.
文摘Short-term load forecasting is a basis of power system dispatching and operation. In order to improve the short term power load precision, a novel approach for short-term load forecasting is presented based on local mean decomposition (LMD) and the radial basis function neural network method (RBFNN). Firstly, the decomposition of LMD method based on characteristics of load data then the decomposed data are respectively predicted by using the RBF network model and predicted by using the BBO-RBF network model. The simulation results show that the RBF network model optimized by using BBO algorithm is optimized in error performance index, and the prediction accuracy is higher and more effective.