两步法作为反应堆数值计算中的主流方法,因其受制于组件均匀化计算和堆芯扩散近似计算中引入的简化假设,对于精细化模型的计算可靠性需要进一步研究。基于DRAGON/DONJON计算BEAVRS 2.02(Benchmark for Evaluation And Validation of Rea...两步法作为反应堆数值计算中的主流方法,因其受制于组件均匀化计算和堆芯扩散近似计算中引入的简化假设,对于精细化模型的计算可靠性需要进一步研究。基于DRAGON/DONJON计算BEAVRS 2.02(Benchmark for Evaluation And Validation of Reactor Simulations Rev.2.0.2)基准题在热态零功率状态下的各项参数,先对组件进行输运计算,获得均匀化少群常数;再使用少群常数完成全堆芯扩散计算,最后比较了传统均匀化、一次多区均匀化和多次多区均匀化三种方案的计算误差。结果表明:本文计算结果与基准值相比吻合良好,临界硼浓度的误差在5×10^(-5)以内,控制棒价值的误差在5×10^(-4)以内。进一步对比裂变率发现,采用一次多区均匀化方案能将非对称燃料组件及相邻组件的平均误差从5.62%降低至3.345%,检验了两步法在精细化模型计算中的适用性。展开更多
使用JMCT(J Monte Carlo Transport Code)对来自MIT的全堆芯pin-by-pin精细建模的国际基准模型BEAVRS的热零功率(HZP)状态进行了模拟计算,并与测试数据进行了对比和分析.比较的物理量包括临界本征值、控制棒价值、反应性温度系数、轴向...使用JMCT(J Monte Carlo Transport Code)对来自MIT的全堆芯pin-by-pin精细建模的国际基准模型BEAVRS的热零功率(HZP)状态进行了模拟计算,并与测试数据进行了对比和分析.比较的物理量包括临界本征值、控制棒价值、反应性温度系数、轴向积分的全堆探测器测量值和不同位置四个组件轴向相对功率密度分布.HZP状态下不同控制棒位置插入和硼浓度的临界本征值计算,JMCT结果与理论值1.000的误差小于0.2%,控制棒价值计算结果与测量值符合.JMCT对轴向积分的探测器径向相对功率分布和四个组件的轴向归一化的探测器的计算结果与测量值进行了比较和分析,计算结果与测量值一致,同时清晰地展示了模型增加格架后,轴向功率曲线在相应位置出现下凹的现象.此外,JMCT给出了轴向积分的组件径向相对功率密度分布和轴向相对功率最大处(Z轴位置)的pin径向相对功率密度分布,并与国际知名程序MC21结果进行了对比,两个图像都符合得非常好.随着计算机与并行计算的高速发展,蒙特卡罗程序开始从传统的反应堆校验工具向反应堆设计工具转变.展开更多
核数据不确定性分析影响着反应堆安全,在反应堆堆芯物理计算过程中具有重要意义。利用SCALE6.1程序包中KENO模块建立反应堆模拟评估和验证基准BEAVRS(Benchmark for Evaluation and Validation of Reactor Simulations)第一循环热态零...核数据不确定性分析影响着反应堆安全,在反应堆堆芯物理计算过程中具有重要意义。利用SCALE6.1程序包中KENO模块建立反应堆模拟评估和验证基准BEAVRS(Benchmark for Evaluation and Validation of Reactor Simulations)第一循环热态零功率堆芯物理模型,采用TSUNAMI-3D模块开展k_(eff)的敏感性与不确定性分析,分析了不同燃料富集度、不同温度对k_(eff)敏感性与不确定性的影响。结果表明:核数据不确定性导致BEAVRS模型的k_(eff)总的不确定性为0.5016%;^(235)U的平均裂变中子数敏感性导致k_(eff)的敏感性系数最大(0.92658);对k_(eff)不确定性贡献最大的是238U(n,γ)反应截面,为0.29814%;在燃料富集度降低、温度上升时,238U(n,γ)反应截面不确定性会导致k_(eff)的不确定性增大。因此,在开展反应堆堆芯物理计算过程中,应重点关注238U(n,γ)反应截面信息。展开更多
分别用CTF和反应堆蒙卡程序RMC对BEAVRS基准题进行全堆精细建模,由RMC统计径向及轴向功率分布并作为CTF的功率输入。利用CTF的区域分解技术,进行BEAVRS全堆pin by pin子通道计算,采用193个核并行计算,耗时268s,得到了精细的燃料棒中心...分别用CTF和反应堆蒙卡程序RMC对BEAVRS基准题进行全堆精细建模,由RMC统计径向及轴向功率分布并作为CTF的功率输入。利用CTF的区域分解技术,进行BEAVRS全堆pin by pin子通道计算,采用193个核并行计算,耗时268s,得到了精细的燃料棒中心及表面温度、冷却剂温度及密度、空泡份额、包壳温度等重要参数,验证了CTF进行全堆子通道计算的高效性及可靠性,为实现基于RMC和CTF的核热耦合计算奠定了重要基础。展开更多
Monte Carlo transport simulations of a full-core reactor with a high-fidelity structure have been made possible by modern-day computing capabilities. Performing transport–burnup calculations of a full-core model typi...Monte Carlo transport simulations of a full-core reactor with a high-fidelity structure have been made possible by modern-day computing capabilities. Performing transport–burnup calculations of a full-core model typically includes millions of burnup areas requiring hundreds of gigabytes of memory for burnup-related tallies. This paper presents the study of a parallel computing method for full-core Monte Carlo transport–burnup calculations and the development of a thread-level data decomposition method. The proposed method decomposes tally accumulators into different threads and improves the parallel communication pattern and memory access efficiency. A typical pressurized water reactor burnup assembly along with the benchmark for evaluation and validation of reactor simulations model was used to test the proposed method.The result indicates that the method effectively reduces memory consumption and maintains high parallel efficiency.展开更多
文摘两步法作为反应堆数值计算中的主流方法,因其受制于组件均匀化计算和堆芯扩散近似计算中引入的简化假设,对于精细化模型的计算可靠性需要进一步研究。基于DRAGON/DONJON计算BEAVRS 2.02(Benchmark for Evaluation And Validation of Reactor Simulations Rev.2.0.2)基准题在热态零功率状态下的各项参数,先对组件进行输运计算,获得均匀化少群常数;再使用少群常数完成全堆芯扩散计算,最后比较了传统均匀化、一次多区均匀化和多次多区均匀化三种方案的计算误差。结果表明:本文计算结果与基准值相比吻合良好,临界硼浓度的误差在5×10^(-5)以内,控制棒价值的误差在5×10^(-4)以内。进一步对比裂变率发现,采用一次多区均匀化方案能将非对称燃料组件及相邻组件的平均误差从5.62%降低至3.345%,检验了两步法在精细化模型计算中的适用性。
文摘使用JMCT(J Monte Carlo Transport Code)对来自MIT的全堆芯pin-by-pin精细建模的国际基准模型BEAVRS的热零功率(HZP)状态进行了模拟计算,并与测试数据进行了对比和分析.比较的物理量包括临界本征值、控制棒价值、反应性温度系数、轴向积分的全堆探测器测量值和不同位置四个组件轴向相对功率密度分布.HZP状态下不同控制棒位置插入和硼浓度的临界本征值计算,JMCT结果与理论值1.000的误差小于0.2%,控制棒价值计算结果与测量值符合.JMCT对轴向积分的探测器径向相对功率分布和四个组件的轴向归一化的探测器的计算结果与测量值进行了比较和分析,计算结果与测量值一致,同时清晰地展示了模型增加格架后,轴向功率曲线在相应位置出现下凹的现象.此外,JMCT给出了轴向积分的组件径向相对功率密度分布和轴向相对功率最大处(Z轴位置)的pin径向相对功率密度分布,并与国际知名程序MC21结果进行了对比,两个图像都符合得非常好.随着计算机与并行计算的高速发展,蒙特卡罗程序开始从传统的反应堆校验工具向反应堆设计工具转变.
文摘核数据不确定性分析影响着反应堆安全,在反应堆堆芯物理计算过程中具有重要意义。利用SCALE6.1程序包中KENO模块建立反应堆模拟评估和验证基准BEAVRS(Benchmark for Evaluation and Validation of Reactor Simulations)第一循环热态零功率堆芯物理模型,采用TSUNAMI-3D模块开展k_(eff)的敏感性与不确定性分析,分析了不同燃料富集度、不同温度对k_(eff)敏感性与不确定性的影响。结果表明:核数据不确定性导致BEAVRS模型的k_(eff)总的不确定性为0.5016%;^(235)U的平均裂变中子数敏感性导致k_(eff)的敏感性系数最大(0.92658);对k_(eff)不确定性贡献最大的是238U(n,γ)反应截面,为0.29814%;在燃料富集度降低、温度上升时,238U(n,γ)反应截面不确定性会导致k_(eff)的不确定性增大。因此,在开展反应堆堆芯物理计算过程中,应重点关注238U(n,γ)反应截面信息。
文摘分别用CTF和反应堆蒙卡程序RMC对BEAVRS基准题进行全堆精细建模,由RMC统计径向及轴向功率分布并作为CTF的功率输入。利用CTF的区域分解技术,进行BEAVRS全堆pin by pin子通道计算,采用193个核并行计算,耗时268s,得到了精细的燃料棒中心及表面温度、冷却剂温度及密度、空泡份额、包壳温度等重要参数,验证了CTF进行全堆子通道计算的高效性及可靠性,为实现基于RMC和CTF的核热耦合计算奠定了重要基础。
基金supported by the Innovation Foundation of the Chinese Academy of Sciences(No.CXJJ-16Q231)the National Natural Science Foundation of China(No.11305203)+3 种基金the Special Program for Informatization of the Chinese Academy of Sciences(No.XXH12504-1-09)the Anhui Provincial Special Project for High Technology Industrythe Special Project of Youth Innovation Promotion Association of Chinese Academy of Sciencesthe Industrialization Fund
文摘Monte Carlo transport simulations of a full-core reactor with a high-fidelity structure have been made possible by modern-day computing capabilities. Performing transport–burnup calculations of a full-core model typically includes millions of burnup areas requiring hundreds of gigabytes of memory for burnup-related tallies. This paper presents the study of a parallel computing method for full-core Monte Carlo transport–burnup calculations and the development of a thread-level data decomposition method. The proposed method decomposes tally accumulators into different threads and improves the parallel communication pattern and memory access efficiency. A typical pressurized water reactor burnup assembly along with the benchmark for evaluation and validation of reactor simulations model was used to test the proposed method.The result indicates that the method effectively reduces memory consumption and maintains high parallel efficiency.