Electrodes,catalysts,membranes,if present,are three main components in constructing an MFC for harvesting desired maximum power density and achieving higher coulombic efficiency (CE).Great improvements have been made,...Electrodes,catalysts,membranes,if present,are three main components in constructing an MFC for harvesting desired maximum power density and achieving higher coulombic efficiency (CE).Great improvements have been made,based on previous researches,in developing and diversifying materials,aside from architectures.Electrodes most familiar to us are widely used carbon materials.For anodes,carbon matrix composites(e.g.,a combination of polyaniline(PANI)with TiO2 using carbon as substrate)have gained special attention,though carbon material itself can exhibit excellent performance by diversifying molecular structures such as carbon nanotubes(CNTs).In the meanwhile,the evolution of MFC architectures,heading to the direction of improving power generation,contributes to the combination of membranes and cathodes from separate modes to diverse assemblies,on which all sorts of catalysts,such as from commonly used Pt to iron phthalocyanine (Pc),metal tetramethoxyphenylporphyrin(TMPP),MnOx,or pyrolyzed iron(Ⅱ)phthalocyanine (pyr-FePc),can be immobilized through synthesis of these catalysts with polymer such as Nafion 117 (Dupont Co.,USA)or tetrafluoroethylen(eTeflon)containing functional groups or Polypyrrol(ePPy).In addition,catholytes with aqueous cathode immersed or flowing through the surface of air-cathode are favorably proposed containing transition metal redox couples or iron chelates.展开更多
In the present study, a new algorithm based on the Volume Of Fluid (VOF) method is developed to simulate the hydrodynamic characteristics on an arc crown wall. Structured grids are generated by the coordinate transf...In the present study, a new algorithm based on the Volume Of Fluid (VOF) method is developed to simulate the hydrodynamic characteristics on an arc crown wall. Structured grids are generated by the coordinate transform method in an arbitrary complex region. The Navier-Stokes equations for two-dimensional incompressible viscous flows are discretized in the Body Fitted Coordinate (BFC) system. The transformed SIMPLE algorithm is proposed to modify the pressure-velocity field and a transformed VOF method is used to trace the free surface. Hydrodynamic characteristics on an arc crown wall are obtained by the improved numerical model based on the BFC system (BFC model). The velocity field, the pressure field and the time profiles of the water surface near the arc crown wall obtained by using the BFC model and the Cartesian model are compared. The BFC model is verified by experimental results.展开更多
文摘Electrodes,catalysts,membranes,if present,are three main components in constructing an MFC for harvesting desired maximum power density and achieving higher coulombic efficiency (CE).Great improvements have been made,based on previous researches,in developing and diversifying materials,aside from architectures.Electrodes most familiar to us are widely used carbon materials.For anodes,carbon matrix composites(e.g.,a combination of polyaniline(PANI)with TiO2 using carbon as substrate)have gained special attention,though carbon material itself can exhibit excellent performance by diversifying molecular structures such as carbon nanotubes(CNTs).In the meanwhile,the evolution of MFC architectures,heading to the direction of improving power generation,contributes to the combination of membranes and cathodes from separate modes to diverse assemblies,on which all sorts of catalysts,such as from commonly used Pt to iron phthalocyanine (Pc),metal tetramethoxyphenylporphyrin(TMPP),MnOx,or pyrolyzed iron(Ⅱ)phthalocyanine (pyr-FePc),can be immobilized through synthesis of these catalysts with polymer such as Nafion 117 (Dupont Co.,USA)or tetrafluoroethylen(eTeflon)containing functional groups or Polypyrrol(ePPy).In addition,catholytes with aqueous cathode immersed or flowing through the surface of air-cathode are favorably proposed containing transition metal redox couples or iron chelates.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51179030, 50921001)
文摘In the present study, a new algorithm based on the Volume Of Fluid (VOF) method is developed to simulate the hydrodynamic characteristics on an arc crown wall. Structured grids are generated by the coordinate transform method in an arbitrary complex region. The Navier-Stokes equations for two-dimensional incompressible viscous flows are discretized in the Body Fitted Coordinate (BFC) system. The transformed SIMPLE algorithm is proposed to modify the pressure-velocity field and a transformed VOF method is used to trace the free surface. Hydrodynamic characteristics on an arc crown wall are obtained by the improved numerical model based on the BFC system (BFC model). The velocity field, the pressure field and the time profiles of the water surface near the arc crown wall obtained by using the BFC model and the Cartesian model are compared. The BFC model is verified by experimental results.