With the increasing maturity of automated guided vehicles(AGV)technology and the widespread application of flexible manufacturing systems,enhancing the efficiency of AGVs in complex environments has become crucial.Thi...With the increasing maturity of automated guided vehicles(AGV)technology and the widespread application of flexible manufacturing systems,enhancing the efficiency of AGVs in complex environments has become crucial.This paper analyzes the challenges of path planning and scheduling in multi-AGV systems,introduces a map-based path search algorithm,and proposes the BFS algorithm for shortest path planning.Through optimization using the breadth-first search(BFS)algorithm,efficient scheduling of multiple AGVs in complex environments is achieved.In addition,this paper validated the effectiveness of the proposed method in a production workshop experiment.The experimental results show that the BFS algorithm can quickly search for the shortest path,reduce the running time of AGVs,and significantly improve the performance of multi-AGV scheduling systems.展开更多
首先介绍了真空衰减检漏机的结构和具体工作流程,然后给出了其差压法检测原理,实现BFS类药品既定瓶型的密封完整性检测。现以一种0.4 mL BFS滴眼剂产品为例,根据漏率计算公式,在满足客户生产要求速度和5μm检测精度前提下,进行检测模腔...首先介绍了真空衰减检漏机的结构和具体工作流程,然后给出了其差压法检测原理,实现BFS类药品既定瓶型的密封完整性检测。现以一种0.4 mL BFS滴眼剂产品为例,根据漏率计算公式,在满足客户生产要求速度和5μm检测精度前提下,进行检测模腔和标准模腔的仿形设计。在完成被检测阴性样品、3D打印基准物和5μm漏孔阳性样品等准备工作后,按照设定的参数进行检测,得到泄漏判定阈值范围,通过多组样品的测试证明,采用真空衰减检漏机设备能够有效检测BFS药品包装密封完整性,保证产品质量。展开更多
In cloud computing Resource allocation is a very complex task.Handling the customer demand makes the challenges of on-demand resource allocation.Many challenges are faced by conventional methods for resource allocatio...In cloud computing Resource allocation is a very complex task.Handling the customer demand makes the challenges of on-demand resource allocation.Many challenges are faced by conventional methods for resource allocation in order tomeet the Quality of Service(QoS)requirements of users.For solving the about said problems a new method was implemented with the utility of machine learning framework of resource allocation by utilizing the cloud computing technique was taken in to an account in this research work.The accuracy in the machine learning algorithm can be improved by introducing Bat Algorithm with feature selection(BFS)in the proposed work,this further reduces the inappropriate features from the data.The similarities that were hidden can be demoralized by the Support Vector Machine(SVM)classifier which is also determine the subspace vector and then a new feature vector can be predicted by using SVM.For an unexpected circumstance SVM model can make a resource allocation decision.The efficiency of proposed SVM classifier of resource allocation can be highlighted by using a singlecell multiuser massive Multiple-Input Multiple Output(MIMO)system,with beam allocation problem as an example.The proposed resource allocation based on SVM performs efficiently than the existing conventional methods;this has been proven by analysing its results.展开更多
复杂的城市轨道交通线网给乘客提供多种出行路径选择,而轨道网络起讫点间可能存在多条可选有效路径,给城市轨道客流清分工作带来难度。为求解相同起讫站点间各路线乘客选择的概率问题,以广州市地铁自动售检票(automaticfarecollection,A...复杂的城市轨道交通线网给乘客提供多种出行路径选择,而轨道网络起讫点间可能存在多条可选有效路径,给城市轨道客流清分工作带来难度。为求解相同起讫站点间各路线乘客选择的概率问题,以广州市地铁自动售检票(automaticfarecollection,AFC)系统刷卡数据为研究对象,提出一种创新性的半监督聚类算法框架。首先基于广度优先(breadth first search, BFS)的K短路径的搜索算法,识别起讫点间的有效路径集,由此确定初始聚类中心及个数;然后以路径距离和换乘次数等特征值依次标定各有效路径权重,由这些标记数据出发,采用加权半监督的方式增强聚类算法的分类能力。最后结合客流调查结果,与经典K-means算法和朴素贝叶斯分类算法进行比对。通过算例证实提出的客流分配算法性能最优,准确率高达94%,具有较好的分类效果。展开更多
文摘With the increasing maturity of automated guided vehicles(AGV)technology and the widespread application of flexible manufacturing systems,enhancing the efficiency of AGVs in complex environments has become crucial.This paper analyzes the challenges of path planning and scheduling in multi-AGV systems,introduces a map-based path search algorithm,and proposes the BFS algorithm for shortest path planning.Through optimization using the breadth-first search(BFS)algorithm,efficient scheduling of multiple AGVs in complex environments is achieved.In addition,this paper validated the effectiveness of the proposed method in a production workshop experiment.The experimental results show that the BFS algorithm can quickly search for the shortest path,reduce the running time of AGVs,and significantly improve the performance of multi-AGV scheduling systems.
文摘首先介绍了真空衰减检漏机的结构和具体工作流程,然后给出了其差压法检测原理,实现BFS类药品既定瓶型的密封完整性检测。现以一种0.4 mL BFS滴眼剂产品为例,根据漏率计算公式,在满足客户生产要求速度和5μm检测精度前提下,进行检测模腔和标准模腔的仿形设计。在完成被检测阴性样品、3D打印基准物和5μm漏孔阳性样品等准备工作后,按照设定的参数进行检测,得到泄漏判定阈值范围,通过多组样品的测试证明,采用真空衰减检漏机设备能够有效检测BFS药品包装密封完整性,保证产品质量。
文摘In cloud computing Resource allocation is a very complex task.Handling the customer demand makes the challenges of on-demand resource allocation.Many challenges are faced by conventional methods for resource allocation in order tomeet the Quality of Service(QoS)requirements of users.For solving the about said problems a new method was implemented with the utility of machine learning framework of resource allocation by utilizing the cloud computing technique was taken in to an account in this research work.The accuracy in the machine learning algorithm can be improved by introducing Bat Algorithm with feature selection(BFS)in the proposed work,this further reduces the inappropriate features from the data.The similarities that were hidden can be demoralized by the Support Vector Machine(SVM)classifier which is also determine the subspace vector and then a new feature vector can be predicted by using SVM.For an unexpected circumstance SVM model can make a resource allocation decision.The efficiency of proposed SVM classifier of resource allocation can be highlighted by using a singlecell multiuser massive Multiple-Input Multiple Output(MIMO)system,with beam allocation problem as an example.The proposed resource allocation based on SVM performs efficiently than the existing conventional methods;this has been proven by analysing its results.
文摘复杂的城市轨道交通线网给乘客提供多种出行路径选择,而轨道网络起讫点间可能存在多条可选有效路径,给城市轨道客流清分工作带来难度。为求解相同起讫站点间各路线乘客选择的概率问题,以广州市地铁自动售检票(automaticfarecollection,AFC)系统刷卡数据为研究对象,提出一种创新性的半监督聚类算法框架。首先基于广度优先(breadth first search, BFS)的K短路径的搜索算法,识别起讫点间的有效路径集,由此确定初始聚类中心及个数;然后以路径距离和换乘次数等特征值依次标定各有效路径权重,由这些标记数据出发,采用加权半监督的方式增强聚类算法的分类能力。最后结合客流调查结果,与经典K-means算法和朴素贝叶斯分类算法进行比对。通过算例证实提出的客流分配算法性能最优,准确率高达94%,具有较好的分类效果。