A new passive wheel type of biped ice-skating robot(BISR)which was able to imitate human skating motion was developed. Firstly, the characteristics of two types of human skating gait were introduced; secondly, after s...A new passive wheel type of biped ice-skating robot(BISR)which was able to imitate human skating motion was developed. Firstly, the characteristics of two types of human skating gait were introduced; secondly, after simplifying the kinematical model, the BISR's motion principle was presented; then the construction and control system of BISR were proposed; at last, the skating experiment of the BISR in a symmetric gait mode was conducted and some conclusions were drawn.展开更多
Through-silicon via(TSV)is a key enabling technology for the emerging 3-dimension(3 D)integrated circuits(ICs).However,the crosstalk between the neighboring TSVs is one of the important sources of the soft faults.To s...Through-silicon via(TSV)is a key enabling technology for the emerging 3-dimension(3 D)integrated circuits(ICs).However,the crosstalk between the neighboring TSVs is one of the important sources of the soft faults.To suppress the crosstalk,the Fibonacci-numeral-system-based crosstalk avoidance code(FNS-CAC)is an effective scheme.Meanwhile,the self-repair schemes are often used to deal with the hard faults,but the repaired results may change the mapping between signals to TSVs,thus may reduce the crosstalk suppression ability of FNS-CAC.A TSV self-repair technique with an improved FNS-CAC codec is proposed in this work.The codec is designed based on the improved Fibonacci numeral system(FNS)adders,which are adaptive to the health states of TSVs.The proposed self-repair technique is able to suppress the crosstalk and repair the faulty TSVs simultaneously.The simulation and analysis results show that the proposed scheme keeps the crosstalk suppression ability of the original FNS-CAC,and it has higher reparability than the local self-repair schemes,such as the signal-switching-based and the signal-shifting-based counterparts.展开更多
文摘A new passive wheel type of biped ice-skating robot(BISR)which was able to imitate human skating motion was developed. Firstly, the characteristics of two types of human skating gait were introduced; secondly, after simplifying the kinematical model, the BISR's motion principle was presented; then the construction and control system of BISR were proposed; at last, the skating experiment of the BISR in a symmetric gait mode was conducted and some conclusions were drawn.
基金supported in part by the Key-Area Research and Development Program of Guangdong Province(2019B010155002)the National Key Research and Development Project(2018YFB2202600)the Research and Development Project of Shenzhen Government(ZDSYS201802061805105).
文摘Through-silicon via(TSV)is a key enabling technology for the emerging 3-dimension(3 D)integrated circuits(ICs).However,the crosstalk between the neighboring TSVs is one of the important sources of the soft faults.To suppress the crosstalk,the Fibonacci-numeral-system-based crosstalk avoidance code(FNS-CAC)is an effective scheme.Meanwhile,the self-repair schemes are often used to deal with the hard faults,but the repaired results may change the mapping between signals to TSVs,thus may reduce the crosstalk suppression ability of FNS-CAC.A TSV self-repair technique with an improved FNS-CAC codec is proposed in this work.The codec is designed based on the improved Fibonacci numeral system(FNS)adders,which are adaptive to the health states of TSVs.The proposed self-repair technique is able to suppress the crosstalk and repair the faulty TSVs simultaneously.The simulation and analysis results show that the proposed scheme keeps the crosstalk suppression ability of the original FNS-CAC,and it has higher reparability than the local self-repair schemes,such as the signal-switching-based and the signal-shifting-based counterparts.