In terms of security and privacy,mobile ad-hoc network(MANET)continues to be in demand for additional debate and development.As more MANET applications become data-oriented,implementing a secure and reliable data tran...In terms of security and privacy,mobile ad-hoc network(MANET)continues to be in demand for additional debate and development.As more MANET applications become data-oriented,implementing a secure and reliable data transfer protocol becomes a major concern in the architecture.However,MANET’s lack of infrastructure,unpredictable topology,and restricted resources,as well as the lack of a previously permitted trust relationship among connected nodes,contribute to the attack detection burden.A novel detection approach is presented in this paper to classify passive and active black-hole attacks.The proposed approach is based on the dipper throated optimization(DTO)algorithm,which presents a plausible path out of multiple paths for statistics transmission to boost MANETs’quality of service.A group of selected packet features will then be weighed by the DTO-based multi-layer perceptron(DTO-MLP),and these features are collected from nodes using the Low Energy Adaptive Clustering Hierarchical(LEACH)clustering technique.MLP is a powerful classifier and the DTO weight optimization method has a significant impact on improving the classification process by strengthening the weights of key features while suppressing the weights ofminor features.This hybridmethod is primarily designed to combat active black-hole assaults.Using the LEACH clustering phase,however,can also detect passive black-hole attacks.The effect of mobility variation on detection error and routing overhead is explored and evaluated using the suggested approach.For diverse mobility situations,the results demonstrate up to 97%detection accuracy and faster execution time.Furthermore,the suggested approach uses an adjustable threshold value to make a correct conclusion regarding whether a node is malicious or benign.展开更多
The Network Layer in wireless mesh networks is responsible for routing packets making it a prime target for intruders and hackers. Black-hole attack is a type of denial-of-service attack which when carried out can dis...The Network Layer in wireless mesh networks is responsible for routing packets making it a prime target for intruders and hackers. Black-hole attack is a type of denial-of-service attack which when carried out can disrupt the services of this layer. This paper takes a look at some important detection and mitigation techniques and presents the drawbacks. After analysis of current mechanisms, the paper proposes RID-AODV, a security solution for multiple black-hole attack in wireless mesh networks. Based on the backbone of AODV, RID-AODV combines the ability of route skipping of IDSAODV and route failure correction using reverse route establishment of RAODV. The enhanced protocol RID-AODV, AODV, IDSAODV, and RAODV are implemented in a simulated environment using ns-2.35 simulator. The networks for each protocol are bombarded with up to ten black-hole nodes starting from zero. The results obtained are then analyzed and compared and a discussion is presented.展开更多
We obtain a lower bound on the spacetime-weighted average of the energy density for the scalar field in four-dimensional flat spacetime. The bound takes the form of a quantum inequality. The inequality does not rely o...We obtain a lower bound on the spacetime-weighted average of the energy density for the scalar field in four-dimensional flat spacetime. The bound takes the form of a quantum inequality. The inequality does not rely on the quantum state and its form is only related to the weights, namely the spacetime sampling functions which are assumed to be smooth, positive and compactly supported. It is found that the inequality is just equal to the temporal quantum energy inequality. When the characteristic length of the temporal sampling function tends to zero, the lower bound becomes divergent. This is consistent with the fact that the spatial restriction on negative energy density does not exist in four-dimensional spacetime.展开更多
We perform the analysis of evolution of cosmic string loops in the background of Gauss-Bonnet-de Sitter. The equation of motion of cosmic string loops in this spacetime is derived. Having solved the equation numerical...We perform the analysis of evolution of cosmic string loops in the background of Gauss-Bonnet-de Sitter. The equation of motion of cosmic string loops in this spacetime is derived. Having solved the equation numerically, we investigate the dependence of the loop evolution on the values of a, related to the Gauss-Bonnet coupling. In the Gauss-Bonnet-de Sitter spacetimes with different dimensionality there exists a special parameter αm. In the environment with α 〉 αm, all the cosmic string loops will collapse to form black holes. Within the region 0 〈 α 〈 αm, the stronger Gauss-Bonnet effect will lead more cosmic string loops, including smaller ones, to form black holes. The larger the value of a is, the smaller the special values that exist, and only the cosmic string loops with initial radius larger than the special values can expand and evolve instead of becoming black holes.展开更多
A new simpler mathematic method is proposed to study fermions tunneling from black holes. According to this method, by using semiclassical approximation theory, it simplifies the Dirac equation of curved spacetime and...A new simpler mathematic method is proposed to study fermions tunneling from black holes. According to this method, by using semiclassical approximation theory, it simplifies the Dirac equation of curved spacetime and then the relationship of the gamma matrix and the component of contravariant metric is considered in order to transform the set of difficult quantum equations into a simple equation. Finally, the fermion tunneling and Hawking radiation of black holes are obtained. The method is very effective and simple, and we will take the Schwarzschild black hole with global monopole and the higher-dimensional Reissner-Nordstrom de Sitter black hole as two examples to show the fact.展开更多
The properties of spherical dilaton black hole spacetimes are investigated through a study of their geodesics. The closed and non-closed orbits of test particles are analysed using the effective potential and phase-pl...The properties of spherical dilaton black hole spacetimes are investigated through a study of their geodesics. The closed and non-closed orbits of test particles are analysed using the effective potential and phase-plane method. The stability and types of orbits are determined in terms of the energy and angular momentum of the test particles. The conditions of the existence of circular orbits for a spherical dilaton spacetime with an arbitrary dilaton coupling constant α are obtained. The properties of the orbits and in particular the position of the innermost stable circular orbit are compared to those of the Reissner-Nordstrom spacetime. The circumferential radius of innermost stable circular orbit and the corresponding angular momentum of the test particles increase for α≠ 0.展开更多
Previously we introduce a new way to quantize the static SchwarzschiM black hole (SSBH), there the SSBH was first treated as a single periodic Euclidean system and then the Bohr-Sommerfeld quantum condition of actio...Previously we introduce a new way to quantize the static SchwarzschiM black hole (SSBH), there the SSBH was first treated as a single periodic Euclidean system and then the Bohr-Sommerfeld quantum condition of action was used to obtain a quantum theory of Schwarzschild black hole [Chin. Phys. Lett. (2004) 21 1887]. Here we try to extend the above method to quantize the static de Sitter (SDS) spacetime and establish a quantum theory of both SDS spaze and the energy density contributed from the cosmological constant.展开更多
On September 14, 2015 09:50:45 UTC, the two laser interferometers of the LIGO program simultaneously observed a first gravitational wave signal called GW150914. With the commissioning of the VIRGO interferometer in 20...On September 14, 2015 09:50:45 UTC, the two laser interferometers of the LIGO program simultaneously observed a first gravitational wave signal called GW150914. With the commissioning of the VIRGO interferometer in 2017, two other detections, GW170814 and GW170817, were observed and their positions given accurately by LIGO and VIRGO. In this article, I argue that the photons circulating in the cavities of the three interferometers of LIGO and VIRGO were sensitive to the field of attraction of the planets of our Solar System and more particularly to that of the Sun, and would not be due to a coalescence of black hole or neutron stars. The shape of the signals obtained by my interaction model (called GEAR) between the photons in the interferometer cavity and the gravitational field of the Sun is very similar to that of a compact binary coalescence, identical to those obtained by general relativity. Solving the equations of GEAR also gives the exact positions and pseudo-date of the coalescences of all the LIGO and VIRGO detections detected so far, and probably those that will come at the end of 2018 and beyond.展开更多
The energy-momentum distributions of Einstein's simplest static geometrical model for an isotropic and homogeneous universe are evaluated. For this purpose, Einstein, Bergmann-Thomson, Landau-Lifshitz (LL), Moller ...The energy-momentum distributions of Einstein's simplest static geometrical model for an isotropic and homogeneous universe are evaluated. For this purpose, Einstein, Bergmann-Thomson, Landau-Lifshitz (LL), Moller and Papapetrou energy-momentum complexes are used in general relativity. While Einstein and Bergmann-Thomson complexes give exactly the same results, LL and Papapetrou energy-momentum complexes do not provide the same energy densities. The Moller energy-momentum density is found to be zero everywhere in Einstein's universe. Also, several spacetimes are the limiting cases considered here.展开更多
In the presence of an applied static and uniform magnetic field, a cylindrical Kadomtsev-Petviashivili equation is derived for a relativistic electromagnetic solitary wave propagating in collisionless plasma consistin...In the presence of an applied static and uniform magnetic field, a cylindrical Kadomtsev-Petviashivili equation is derived for a relativistic electromagnetic solitary wave propagating in collisionless plasma consisting electrons, positrons, and ions in the case of weak relativistic limit. This equation is solved in a stationary frame to obtain explicit expression for the velocity, amplitude and width of solitons. The amplitude of the solitary wave has a maximum value at a critical αc of the ratio of the ion equilibrium density to the electron one, and it increases as the applied magnetic field becomes larger.展开更多
Because of the complicated interplay between the prefractionator and main distillation column involved,the black-hole problem might occur and prohibit the assignment of four specifications to dividing-wall distillatio...Because of the complicated interplay between the prefractionator and main distillation column involved,the black-hole problem might occur and prohibit the assignment of four specifications to dividing-wall distillation columns(DWDCs)(e.g., the three main product compositions plus an impurity ratio in the intermediate product), which lowers terribly process flexibility and operability. In this paper, a feed thermal condition adjustment strategy, achieved by the installation of a pre-heater in feed pipeline, is employed to eliminate the black-hole problem and serve to enhance process flexibility and operability. Through the strong influence to the overall mass and energy balance of the DWDC, the feed thermal condition adjustment can alter the interlinking flows between the thermally coupled prefractionator and main distillation column and work effectively to coordinate their relationship. A DWDC separating a benzene, toluene, and o-xylene mixture is chosen to ascertain the feasibility of the philosophy proposed. The static and dynamic studies demonstrate that the feed thermal condition adjustment is an effective way to refine process design and can completely eliminate the black-hole problem and elevate consequently process flexibility and operability.展开更多
Quantum gravity can modify the usual energy-momentum dispersion relation. We provide evidence for the argument that the modified dispersion relation is constrained by the black hole thermodynamics, for consistency of ...Quantum gravity can modify the usual energy-momentum dispersion relation. We provide evidence for the argument that the modified dispersion relation is constrained by the black hole thermodynamics, for consistency of quantum gravity.展开更多
A critique of black-hole-black-body radiation, black-hole thermodynamics, entropy bounds, inflation cosmology, and the lack of gravitational aberration is presented. With the exception of the last topic, the common th...A critique of black-hole-black-body radiation, black-hole thermodynamics, entropy bounds, inflation cosmology, and the lack of gravitational aberration is presented. With the exception of the last topic, the common thread is the misuse of entropy and, consequently, the second law. Hawking’s derivation of the entropy loss due to black hole emission rests on Kirchhoff’s radiation law which equates the rates of absorption and emission of energy in any given frequency interval. Black-body radiation cannot, therefore, be used as a mechanism for black-hole evaporation. A derivation of the Planck factor from an exponential Doppler shift shows why the temperature cannot be proportional to the acceleration;accelerations do not cause Doppler shifts. Inflationary cosmology is based on a misconception that the adiabatic condition of Einstein’s equations hold, and, yet, there can be an enormous increase in the entropy. The cause for the increase is a negative pressure which contradicts the thermodynamic definition of positive pressure as the derivative of the entropy with respect to the volume times the temperature: Increases in volume cause corresponding increases in the entropy. A first-order phase transition cannot occur under adiabatic conditions, cannot generate entropy, and the latent heat cannot be used to reheat the universe. Finally, a negative pressure is invoked to explain the absence of gravitational aberration, assuming that gravity propagates at the speed of light. It is the only physical theory of universal content which I am convinced will never be overthrown, within the framwork of applicability of its basic concepts. Albert Einstein on展开更多
The Earth’s rhythm is controlled by the intermittent energy liberation in the Earth. In the Earth’s revolution and the Earth’s rotation system, the energy conversion among the potential energy, thermal energy and r...The Earth’s rhythm is controlled by the intermittent energy liberation in the Earth. In the Earth’s revolution and the Earth’s rotation system, the energy conversion among the potential energy, thermal energy and rotational energy is different from that in non revolution and non rotation system. In the Earth’s core, there exists not only huge thermal energy, but huge rotation energy and radioactive heat source. They are the internal causes of energy liberation. Astronomical factor makes the Earth’s inner core to vibrate periodically, makes the Earth’s orbit, the Earth’s volume, the Earth’s ellipticity, speed of the Earth’s revolution and speed of the Earth’s rotation to change periodically, it is the external cause of the intermittent energy liberation. As concerns the differential rotation of the Earth’s inner core, the fluctuations of gravitational constant G value makes the solar radiative quantity and the solar system’s volume to change and to effect the exchange of core mantle angular momentum and volume of crust mantle, and so leads to the formation and eruption of the superplumes, so it controls the energy exchange in CMB. It is the reason for the correspondence of the geological cycles one by one with the astronomical periods and is the basic cause of the Earth’s rhythm. According to the astronomical periods, it is probable that the geological changes may be predicted in the future. The conclusion deduced from the spherical presure formula is emphasized here, that the earth core is in a non insulated status. This can, in the one hand, theoretically explain the large scale periodic energy release from the earth core, and it is also an appreciable warning to the over exploitation of energy from the interior of the earth, the thermal energy there is limited, not limitless. The over exploitation of the geothermal energy will not only warm up the earth surface quickly, but also cool down the interior of the earth in the long run and close attention is called for world over.展开更多
A disformal rotating black-hole solution is a black-hole solution in quadratic degenerate higher-order scalar-tensor theories.It breaks the circular condition of spacetime different from the case of the usual Kerr spa...A disformal rotating black-hole solution is a black-hole solution in quadratic degenerate higher-order scalar-tensor theories.It breaks the circular condition of spacetime different from the case of the usual Kerr spacetime.This study investigated the dynamic behaviors of the motion of timelike particles in such disformal black-hole spacetime with an extra deformation parameter.Results showed that the characteristics of the particle’s motion depend on the sign of the deformation parameter.For the positive deformation parameter,the motion is regular and orderly.For the negative one,as the deformation parameter changes,the motion of the particles undergoes a series of transitions between the chaotic motion and the regular motion and falls into the horizon or escapes to spatial infinity.This means that the dynamic behavior of timelike particles in the disformal Kerr black-hole spacetime with noncircularity becomes richer than that in the usual Kerr black-hole case.展开更多
The upper bounds on the entropy of a radiation system confined to a spherical box are calculated in six cases by using the equation of state of radiation in flat spacetime and the equation of state of radiation near b...The upper bounds on the entropy of a radiation system confined to a spherical box are calculated in six cases by using the equation of state of radiation in flat spacetime and the equation of state of radiation near black-hole horizon,which was derived by Li and Liu (hereafter the Li-Liu equation).It turns out that the Li-Liu equation does have unique advantage in dealing with the entropy bound of critical self-gravitating radiation systems,while the usual equation of state will result in entropy divergence.In the case of non-self-gravitating radiation systems and non-critical self-gravitating radiation systems,there is no difference in the entropy bounds derived by these two equations of state.展开更多
Semantic segmentation has recently witnessed rapid progress, but existing methods only focus on identifying objects or instances. In this work, we aim to address the task of semantic understanding of scenes with deep ...Semantic segmentation has recently witnessed rapid progress, but existing methods only focus on identifying objects or instances. In this work, we aim to address the task of semantic understanding of scenes with deep learning. Different from many existing methods, our method focuses on putting forward some techniques to improve the existing algorithms, rather than to propose a whole new framework. Objectness enhancement is the first effective technique. It exploits the detection module to produce object region proposals with category probability, and these regions are used to weight the parsing feature map directly. 'Extra background' category, as a specific category, is often attached to the category space for improving parsing result in semantic and instance segmentation tasks. In scene parsing tasks, extra background category is still beneficial to improve the model in training. However, some pixels may be assigned into this nonexistent category in inference. Black-hole filling technique is proposed to avoid the incorrect classification. For verifying these two techniques, we integrate them into a parsing framework for generating parsing result. We call this unified framework as Objectness Enhancement Network (OENet). Compared with previous work, our proposed OENet system effectively improves the performance over the original model on SceneParse150 scene parsing dataset, reaching 38.4 mIoU (mean intersection-over-union) and 77.9% accuracy in the validation set without assembling multiple models. Its effectiveness is also verified on the Cityscapes dataset.展开更多
文摘In terms of security and privacy,mobile ad-hoc network(MANET)continues to be in demand for additional debate and development.As more MANET applications become data-oriented,implementing a secure and reliable data transfer protocol becomes a major concern in the architecture.However,MANET’s lack of infrastructure,unpredictable topology,and restricted resources,as well as the lack of a previously permitted trust relationship among connected nodes,contribute to the attack detection burden.A novel detection approach is presented in this paper to classify passive and active black-hole attacks.The proposed approach is based on the dipper throated optimization(DTO)algorithm,which presents a plausible path out of multiple paths for statistics transmission to boost MANETs’quality of service.A group of selected packet features will then be weighed by the DTO-based multi-layer perceptron(DTO-MLP),and these features are collected from nodes using the Low Energy Adaptive Clustering Hierarchical(LEACH)clustering technique.MLP is a powerful classifier and the DTO weight optimization method has a significant impact on improving the classification process by strengthening the weights of key features while suppressing the weights ofminor features.This hybridmethod is primarily designed to combat active black-hole assaults.Using the LEACH clustering phase,however,can also detect passive black-hole attacks.The effect of mobility variation on detection error and routing overhead is explored and evaluated using the suggested approach.For diverse mobility situations,the results demonstrate up to 97%detection accuracy and faster execution time.Furthermore,the suggested approach uses an adjustable threshold value to make a correct conclusion regarding whether a node is malicious or benign.
文摘The Network Layer in wireless mesh networks is responsible for routing packets making it a prime target for intruders and hackers. Black-hole attack is a type of denial-of-service attack which when carried out can disrupt the services of this layer. This paper takes a look at some important detection and mitigation techniques and presents the drawbacks. After analysis of current mechanisms, the paper proposes RID-AODV, a security solution for multiple black-hole attack in wireless mesh networks. Based on the backbone of AODV, RID-AODV combines the ability of route skipping of IDSAODV and route failure correction using reverse route establishment of RAODV. The enhanced protocol RID-AODV, AODV, IDSAODV, and RAODV are implemented in a simulated environment using ns-2.35 simulator. The networks for each protocol are bombarded with up to ten black-hole nodes starting from zero. The results obtained are then analyzed and compared and a discussion is presented.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10375023, 10575035 and 10125521, the Program for NCET (No 04-0784), the Key Project of Chinese Ministry of Education (No 205110), and the National Major State Basic Research and Development Programme of China (G2000077400).
文摘We obtain a lower bound on the spacetime-weighted average of the energy density for the scalar field in four-dimensional flat spacetime. The bound takes the form of a quantum inequality. The inequality does not rely on the quantum state and its form is only related to the weights, namely the spacetime sampling functions which are assumed to be smooth, positive and compactly supported. It is found that the inequality is just equal to the temporal quantum energy inequality. When the characteristic length of the temporal sampling function tends to zero, the lower bound becomes divergent. This is consistent with the fact that the spatial restriction on negative energy density does not exist in four-dimensional spacetime.
基金Supported by the National Natural Science Foundation of China under Grant No 10333020, and the Shanghai Municipal Science and Technology Commission under Grant No 04dz05905.
文摘We perform the analysis of evolution of cosmic string loops in the background of Gauss-Bonnet-de Sitter. The equation of motion of cosmic string loops in this spacetime is derived. Having solved the equation numerically, we investigate the dependence of the loop evolution on the values of a, related to the Gauss-Bonnet coupling. In the Gauss-Bonnet-de Sitter spacetimes with different dimensionality there exists a special parameter αm. In the environment with α 〉 αm, all the cosmic string loops will collapse to form black holes. Within the region 0 〈 α 〈 αm, the stronger Gauss-Bonnet effect will lead more cosmic string loops, including smaller ones, to form black holes. The larger the value of a is, the smaller the special values that exist, and only the cosmic string loops with initial radius larger than the special values can expand and evolve instead of becoming black holes.
基金supported by the National Natural Science Foundation of China(Grant Nos.10773008 and 11075224)the Chongqing University Postgraduates Science and Innovation Fund,China(Grant No.200811B1A0100299)
文摘A new simpler mathematic method is proposed to study fermions tunneling from black holes. According to this method, by using semiclassical approximation theory, it simplifies the Dirac equation of curved spacetime and then the relationship of the gamma matrix and the component of contravariant metric is considered in order to transform the set of difficult quantum equations into a simple equation. Finally, the fermion tunneling and Hawking radiation of black holes are obtained. The method is very effective and simple, and we will take the Schwarzschild black hole with global monopole and the higher-dimensional Reissner-Nordstrom de Sitter black hole as two examples to show the fact.
文摘The properties of spherical dilaton black hole spacetimes are investigated through a study of their geodesics. The closed and non-closed orbits of test particles are analysed using the effective potential and phase-plane method. The stability and types of orbits are determined in terms of the energy and angular momentum of the test particles. The conditions of the existence of circular orbits for a spherical dilaton spacetime with an arbitrary dilaton coupling constant α are obtained. The properties of the orbits and in particular the position of the innermost stable circular orbit are compared to those of the Reissner-Nordstrom spacetime. The circumferential radius of innermost stable circular orbit and the corresponding angular momentum of the test particles increase for α≠ 0.
文摘Previously we introduce a new way to quantize the static SchwarzschiM black hole (SSBH), there the SSBH was first treated as a single periodic Euclidean system and then the Bohr-Sommerfeld quantum condition of action was used to obtain a quantum theory of Schwarzschild black hole [Chin. Phys. Lett. (2004) 21 1887]. Here we try to extend the above method to quantize the static de Sitter (SDS) spacetime and establish a quantum theory of both SDS spaze and the energy density contributed from the cosmological constant.
文摘On September 14, 2015 09:50:45 UTC, the two laser interferometers of the LIGO program simultaneously observed a first gravitational wave signal called GW150914. With the commissioning of the VIRGO interferometer in 2017, two other detections, GW170814 and GW170817, were observed and their positions given accurately by LIGO and VIRGO. In this article, I argue that the photons circulating in the cavities of the three interferometers of LIGO and VIRGO were sensitive to the field of attraction of the planets of our Solar System and more particularly to that of the Sun, and would not be due to a coalescence of black hole or neutron stars. The shape of the signals obtained by my interaction model (called GEAR) between the photons in the interferometer cavity and the gravitational field of the Sun is very similar to that of a compact binary coalescence, identical to those obtained by general relativity. Solving the equations of GEAR also gives the exact positions and pseudo-date of the coalescences of all the LIGO and VIRGO detections detected so far, and probably those that will come at the end of 2018 and beyond.
文摘The energy-momentum distributions of Einstein's simplest static geometrical model for an isotropic and homogeneous universe are evaluated. For this purpose, Einstein, Bergmann-Thomson, Landau-Lifshitz (LL), Moller and Papapetrou energy-momentum complexes are used in general relativity. While Einstein and Bergmann-Thomson complexes give exactly the same results, LL and Papapetrou energy-momentum complexes do not provide the same energy densities. The Moller energy-momentum density is found to be zero everywhere in Einstein's universe. Also, several spacetimes are the limiting cases considered here.
文摘In the presence of an applied static and uniform magnetic field, a cylindrical Kadomtsev-Petviashivili equation is derived for a relativistic electromagnetic solitary wave propagating in collisionless plasma consisting electrons, positrons, and ions in the case of weak relativistic limit. This equation is solved in a stationary frame to obtain explicit expression for the velocity, amplitude and width of solitons. The amplitude of the solitary wave has a maximum value at a critical αc of the ratio of the ion equilibrium density to the electron one, and it increases as the applied magnetic field becomes larger.
基金Supported by the National Natural Science Foundation of China(21076015,21376018,21576014,21676011)
文摘Because of the complicated interplay between the prefractionator and main distillation column involved,the black-hole problem might occur and prohibit the assignment of four specifications to dividing-wall distillation columns(DWDCs)(e.g., the three main product compositions plus an impurity ratio in the intermediate product), which lowers terribly process flexibility and operability. In this paper, a feed thermal condition adjustment strategy, achieved by the installation of a pre-heater in feed pipeline, is employed to eliminate the black-hole problem and serve to enhance process flexibility and operability. Through the strong influence to the overall mass and energy balance of the DWDC, the feed thermal condition adjustment can alter the interlinking flows between the thermally coupled prefractionator and main distillation column and work effectively to coordinate their relationship. A DWDC separating a benzene, toluene, and o-xylene mixture is chosen to ascertain the feasibility of the philosophy proposed. The static and dynamic studies demonstrate that the feed thermal condition adjustment is an effective way to refine process design and can completely eliminate the black-hole problem and elevate consequently process flexibility and operability.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10573027 and 10373003, and the Natural Science Foundation of Shanghai under Grant No 05ZR14138.
文摘Quantum gravity can modify the usual energy-momentum dispersion relation. We provide evidence for the argument that the modified dispersion relation is constrained by the black hole thermodynamics, for consistency of quantum gravity.
文摘A critique of black-hole-black-body radiation, black-hole thermodynamics, entropy bounds, inflation cosmology, and the lack of gravitational aberration is presented. With the exception of the last topic, the common thread is the misuse of entropy and, consequently, the second law. Hawking’s derivation of the entropy loss due to black hole emission rests on Kirchhoff’s radiation law which equates the rates of absorption and emission of energy in any given frequency interval. Black-body radiation cannot, therefore, be used as a mechanism for black-hole evaporation. A derivation of the Planck factor from an exponential Doppler shift shows why the temperature cannot be proportional to the acceleration;accelerations do not cause Doppler shifts. Inflationary cosmology is based on a misconception that the adiabatic condition of Einstein’s equations hold, and, yet, there can be an enormous increase in the entropy. The cause for the increase is a negative pressure which contradicts the thermodynamic definition of positive pressure as the derivative of the entropy with respect to the volume times the temperature: Increases in volume cause corresponding increases in the entropy. A first-order phase transition cannot occur under adiabatic conditions, cannot generate entropy, and the latent heat cannot be used to reheat the universe. Finally, a negative pressure is invoked to explain the absence of gravitational aberration, assuming that gravity propagates at the speed of light. It is the only physical theory of universal content which I am convinced will never be overthrown, within the framwork of applicability of its basic concepts. Albert Einstein on
文摘The Earth’s rhythm is controlled by the intermittent energy liberation in the Earth. In the Earth’s revolution and the Earth’s rotation system, the energy conversion among the potential energy, thermal energy and rotational energy is different from that in non revolution and non rotation system. In the Earth’s core, there exists not only huge thermal energy, but huge rotation energy and radioactive heat source. They are the internal causes of energy liberation. Astronomical factor makes the Earth’s inner core to vibrate periodically, makes the Earth’s orbit, the Earth’s volume, the Earth’s ellipticity, speed of the Earth’s revolution and speed of the Earth’s rotation to change periodically, it is the external cause of the intermittent energy liberation. As concerns the differential rotation of the Earth’s inner core, the fluctuations of gravitational constant G value makes the solar radiative quantity and the solar system’s volume to change and to effect the exchange of core mantle angular momentum and volume of crust mantle, and so leads to the formation and eruption of the superplumes, so it controls the energy exchange in CMB. It is the reason for the correspondence of the geological cycles one by one with the astronomical periods and is the basic cause of the Earth’s rhythm. According to the astronomical periods, it is probable that the geological changes may be predicted in the future. The conclusion deduced from the spherical presure formula is emphasized here, that the earth core is in a non insulated status. This can, in the one hand, theoretically explain the large scale periodic energy release from the earth core, and it is also an appreciable warning to the over exploitation of energy from the interior of the earth, the thermal energy there is limited, not limitless. The over exploitation of the geothermal energy will not only warm up the earth surface quickly, but also cool down the interior of the earth in the long run and close attention is called for world over.
基金supported by the National Natural Science Foundation of China(Grant Nos.11875026,11875025,12035005,and2020YFC2201403)。
文摘A disformal rotating black-hole solution is a black-hole solution in quadratic degenerate higher-order scalar-tensor theories.It breaks the circular condition of spacetime different from the case of the usual Kerr spacetime.This study investigated the dynamic behaviors of the motion of timelike particles in such disformal black-hole spacetime with an extra deformation parameter.Results showed that the characteristics of the particle’s motion depend on the sign of the deformation parameter.For the positive deformation parameter,the motion is regular and orderly.For the negative one,as the deformation parameter changes,the motion of the particles undergoes a series of transitions between the chaotic motion and the regular motion and falls into the horizon or escapes to spatial infinity.This means that the dynamic behavior of timelike particles in the disformal Kerr black-hole spacetime with noncircularity becomes richer than that in the usual Kerr black-hole case.
文摘The upper bounds on the entropy of a radiation system confined to a spherical box are calculated in six cases by using the equation of state of radiation in flat spacetime and the equation of state of radiation near black-hole horizon,which was derived by Li and Liu (hereafter the Li-Liu equation).It turns out that the Li-Liu equation does have unique advantage in dealing with the entropy bound of critical self-gravitating radiation systems,while the usual equation of state will result in entropy divergence.In the case of non-self-gravitating radiation systems and non-critical self-gravitating radiation systems,there is no difference in the entropy bounds derived by these two equations of state.
文摘Semantic segmentation has recently witnessed rapid progress, but existing methods only focus on identifying objects or instances. In this work, we aim to address the task of semantic understanding of scenes with deep learning. Different from many existing methods, our method focuses on putting forward some techniques to improve the existing algorithms, rather than to propose a whole new framework. Objectness enhancement is the first effective technique. It exploits the detection module to produce object region proposals with category probability, and these regions are used to weight the parsing feature map directly. 'Extra background' category, as a specific category, is often attached to the category space for improving parsing result in semantic and instance segmentation tasks. In scene parsing tasks, extra background category is still beneficial to improve the model in training. However, some pixels may be assigned into this nonexistent category in inference. Black-hole filling technique is proposed to avoid the incorrect classification. For verifying these two techniques, we integrate them into a parsing framework for generating parsing result. We call this unified framework as Objectness Enhancement Network (OENet). Compared with previous work, our proposed OENet system effectively improves the performance over the original model on SceneParse150 scene parsing dataset, reaching 38.4 mIoU (mean intersection-over-union) and 77.9% accuracy in the validation set without assembling multiple models. Its effectiveness is also verified on the Cityscapes dataset.