Roof plate secretion of bone morphogenetic proteins(BMPs)directs the cellular fate of sensory neurons during spinal cord development,including the formation of the ascending sensory columns,though their biology is not...Roof plate secretion of bone morphogenetic proteins(BMPs)directs the cellular fate of sensory neurons during spinal cord development,including the formation of the ascending sensory columns,though their biology is not well understood.Type-ⅡBMP receptor(BMPRⅡ),the cognate receptor,is expressed by neural precursor cells during embryogenesis;however,an in vitro method of enriching BMPRⅡ^(+)human neural precursor cells(hNPCs)from the fetal spinal cord is absent.Immunofluorescence was undertaken on intact second-trimester human fetal spinal cord using antibodies to BMPRⅡand leukemia inhibitory factor(LIF).Regions of highest BMPRⅡ^(+)immunofluorescence localized to sensory columns.Parenchymal and meningeal-associated BMPRⅡ^(+)vascular cells were identified in both intact fetal spinal cord and cortex by co-positivity with vascular lineage markers,CD34/CD39.LIF immunostaining identified a population of somas concentrated in dorsal and ventral horn interneurons,mirroring the expression of LIF receptor/CD118.A combination of LIF supplementation and high-density culture maintained culture growth beyond 10 passages,while synergistically increasing the proportion of neurospheres with a stratified,cytoarchitecture.These neurospheres were characterized by BMPRⅡ^(+)/MAP2ab^(+/–)/βⅢ-tubulin^(+)/nestin^(–)/vimentin^(–)/GFAP^(–)/NeuN^(–)surface hNPCs surrounding a heterogeneous core ofβⅢ-tubulin^(+)/nestin^(+)/vimentin^(+)/GFAP^(+)/MAP2ab^(–)/NeuN^(–)multipotent precursors.Dissociated cultures from tripotential neurospheres contained neuronal(βⅢ-tubulin^(+)),astrocytic(GFAP+),and oligodendrocytic(O4+)lineage cells.Fluorescence-activated cell sorting-sorted BMPRⅡ^(+)hNPCs were MAP2ab^(+/–)/βⅢ-tubulin^(+)/GFAP^(–)/O4^(–)in culture.This is the first isolation of BMPRⅡ^(+)hNPCs identified and characterized in human fetal spinal cords.Our data show that LIF combines synergistically with high-density reaggregate cultures to support the organotypic reorganization of neurospheres,characterized by surface BMPRⅡ^(+)hNPCs.Our study has provided a new methodology for an in vitro model capable of amplifying human fetal spinal cord cell numbers for>10 passages.Investigations of the role BMPRⅡplays in spinal cord development have primarily relied upon mouse and rat models,with interpolations to human development being derived through inference.Because of significant species differences between murine biology and human,including anatomical dissimilarities in central nervous system(CNS)structure,the findings made in murine models cannot be presumed to apply to human spinal cord development.For these reasons,our human in vitro model offers a novel tool to better understand neurodevelopmental pathways,including BMP signaling,as well as spinal cord injury research and testing drug therapies.展开更多
Cre/loxP technology has been widely used to study cell type-specific functions of genes. Proper interpretation of such data critically depends on a clear understanding of the tissue specificity of Cre expression. The ...Cre/loxP technology has been widely used to study cell type-specific functions of genes. Proper interpretation of such data critically depends on a clear understanding of the tissue specificity of Cre expression. The Dmpl- Cre mouse, expressing Cre from a 14-kb DNA fragment of the mouse Dmpl gene, has become a common tool for studying gene function in osteocytes, but the presumed cell specificity is yet to be fully established. By using the Ai9 reporter line that expresses a red fluorescent protein upon Cre recombination, we find that in 2-month-old mice, Dmpl-Cre targets not only osteocytes within the bone matrix but also osteoblasts on the bone surface and preosteoblasts at the metaphyseal chondro-osseous junction. In the bone marrow, Cre activity is evident in certain stromal cells adjacent to the blood vessels, but not in adipocytes. Outside the skeleton, Dmpl-Cre marks not only the skeletal muscle fibers, certain cells in the cerebellum and the hindbrain but also gastric and intestinal mesenchymal cells that express Pdgfra. Confirming the utility of Dmpl-Cre in the gastrointestinal mesenchyme, deletion of Bmprla with Dmpl-Cre causes numerous large polyps along the gastrointestinal tract, consistent with prior work involving inhibition of BMP signaling. Thus, caution needs to be exercised when using Dmpl-Cre because it targets not only the osteoblast lineage at an earlier stage than previously appreciated, but also a number of non-skeletal cell types.展开更多
Objective: Bone morphogenetic protein receptor 2(BMPR2) and hypoxia-inducible factor 1-α(HIF1-α) existed abnormal expression in several types of cancer. However, their expressions and related roles in osteosarc...Objective: Bone morphogenetic protein receptor 2(BMPR2) and hypoxia-inducible factor 1-α(HIF1-α) existed abnormal expression in several types of cancer. However, their expressions and related roles in osteosarcoma are largely unknown.Methods:To investigate the clinical significance of BMPR2 and HIF1-αin osteosarcoma,we analyzed their expression levels in 103 osteosarcoma specimens by immunochemistry.Meanwhile,we conducted a follow-up to examine the metastatic behavior and overall survival(OS)of osteosarcoma patients.Results:Among 103 tissues,61 cases had BMPR2-positive expression and 57 cases had HIF1-αpositive expression.A significant correlation was noticed between BMPR2 and HIF1-αexpression in osteosarcoma specimens(P=0.035).Receiver-operating characteristic(ROC)curves were calculated to investigate the predictive value of the two markers in tumor metastasis.By means of univariate and multivariate analysis,BMPR2 and HIF1-αexpression,as well as higher tumor grade,were identified as significant risk factors for OS in patients with osteosarcoma.Kaplan-Meier survival analysis revealed that the patients with BMPR2 and HIF1-αpositive expression had worse OS compared with patients with BMPR2-negative or HIF1-α-negative staining.Conclusions:It can be concluded that BMPR2 and HIF1-αexpression is highly correlated with metastatic behavior in patients with osteosarcoma and can serve as predictive markers for metastasis and OS of these patients.展开更多
Objective: The results of a previous study showed that a clear dysregulation was evident in the global gene expression of the BCL11A-suppressed B-lymphoma cells. In this study, the bone morphogenetic protein receptor,...Objective: The results of a previous study showed that a clear dysregulation was evident in the global gene expression of the BCL11A-suppressed B-lymphoma cells. In this study, the bone morphogenetic protein receptor, type II(BMPR2), E1 A binding protein p300(EP300), transforming growth factor-β2(TGFβ2), and tumor necrosis factor, and alpha-induced protein 3(TNFAIP3) gene expression patterns in B-cell malignancies were studied. Methods: The relative expression levels of BMPR2, EP300, TGFβ2, and TNFAIP3 mRNA in B-lymphoma cell lines, myeloid cell lines, as well as in cells from healthy volunteers, were determined by real-time quantitative reverse transcriptpolymerase chain reaction(qRT-PCR) with SYBR Green Dye. Glyceraldehyde-3-phosphate dehydrogenase(GAPDH) was used as reference. Results: The expression level of TGFβ2 mRNA in B-lymphoma cell lines was significantly higher than those in the cells from the healthy control(P<0.05). However, the expression level of TNFAIP3 mRNA in B-malignant cells was significantly lower than that of the healthy control(P<0.05). The expression levels of BMPR2 and EP300 mRNA showed no significant difference between B-malignant cell lines and the healthy group(P>0.05). In B-lymphoma cell lines, correlation analyses revealed that the expression of BMPR2 and TNFAIP3(r=0.882, P=0.04) had significant positive relation. The expression levels of BMPR2, EP300, and TNFAIP3 mRNA in cell lines from myeloid leukemia were significantly lower than those in the cells from the healthy control(P<0.05). The expression levels of TGFβ2 mRNA showed no significant difference between myeloid leukemia cell lines and the healthy control or B-malignant cell lines(P>0.05). The expression levels of BMPR2, EP300, and TNFAIP3 mRNA in B-lymphoma cells were significantly higher than those of the myeloid leukemia cells(P<0.05).Conclusion: Different expression patterns of BMPR2, EP300, TGFβ2, and TNFAIP3 genes in B-lymphoma cells exist.展开更多
Objective:Pulmonary atresia(PA)is a rare type of complex cyanotic congenital heart defect characterized primarily by an undeveloped pulmonary valve or pulmonary artery.Therefore,defining a disease-causing gene mutatio...Objective:Pulmonary atresia(PA)is a rare type of complex cyanotic congenital heart defect characterized primarily by an undeveloped pulmonary valve or pulmonary artery.Therefore,defining a disease-causing gene mutation in a pulmonary atresia family is a possible method of genetic counseling,future prenatal diagnosis,and therapeutic approaches for pulmonary atresia.Methods:Blood samples were collected from six PA family members,and genomic DNA was extracted using the QIAamp DNA Blood Mini Kit.Gene detection was performed using a second-generation sequencing gene panel.Results:Genetic testing results indicated that a heterozygous mutation originating from maternal inheritance was detected in the BMPR2 gene of the proband’s genomic DNA.The pathogenic gene was c.2804C>T(p.A935V).The mutation was also detected in the genomic DNA of the proband’s elder brother(III-1),but not in other family members.Conclusion:To the best of our knowledge,this is the first study to report the BMPR2 variant responsible for pulmonary atresia.The frequency of the c.2804C>T(p.A935V)mutation detected in this family is extremely low in the normal population(1/246048).The mutation was highly conserved among different species.Sorting intolerant from tolerant(SIFT)predicts it to be a harmful mutation.展开更多
基金supported by grants from the National Health and Medical Research Council(NHMRC)of Australia(Nos.571100 and 1048082)the Baxter Charitable Foundation(to TCL)+1 种基金Medical Research grants from the Rebecca L.Cooper Medical Research Foundation(to MWW,TCL,and MDL)supported by a Charles D.Kelman,M.D.Postdoctoral Award(2010)from the International Retinal Research Foundation(USA)。
文摘Roof plate secretion of bone morphogenetic proteins(BMPs)directs the cellular fate of sensory neurons during spinal cord development,including the formation of the ascending sensory columns,though their biology is not well understood.Type-ⅡBMP receptor(BMPRⅡ),the cognate receptor,is expressed by neural precursor cells during embryogenesis;however,an in vitro method of enriching BMPRⅡ^(+)human neural precursor cells(hNPCs)from the fetal spinal cord is absent.Immunofluorescence was undertaken on intact second-trimester human fetal spinal cord using antibodies to BMPRⅡand leukemia inhibitory factor(LIF).Regions of highest BMPRⅡ^(+)immunofluorescence localized to sensory columns.Parenchymal and meningeal-associated BMPRⅡ^(+)vascular cells were identified in both intact fetal spinal cord and cortex by co-positivity with vascular lineage markers,CD34/CD39.LIF immunostaining identified a population of somas concentrated in dorsal and ventral horn interneurons,mirroring the expression of LIF receptor/CD118.A combination of LIF supplementation and high-density culture maintained culture growth beyond 10 passages,while synergistically increasing the proportion of neurospheres with a stratified,cytoarchitecture.These neurospheres were characterized by BMPRⅡ^(+)/MAP2ab^(+/–)/βⅢ-tubulin^(+)/nestin^(–)/vimentin^(–)/GFAP^(–)/NeuN^(–)surface hNPCs surrounding a heterogeneous core ofβⅢ-tubulin^(+)/nestin^(+)/vimentin^(+)/GFAP^(+)/MAP2ab^(–)/NeuN^(–)multipotent precursors.Dissociated cultures from tripotential neurospheres contained neuronal(βⅢ-tubulin^(+)),astrocytic(GFAP+),and oligodendrocytic(O4+)lineage cells.Fluorescence-activated cell sorting-sorted BMPRⅡ^(+)hNPCs were MAP2ab^(+/–)/βⅢ-tubulin^(+)/GFAP^(–)/O4^(–)in culture.This is the first isolation of BMPRⅡ^(+)hNPCs identified and characterized in human fetal spinal cords.Our data show that LIF combines synergistically with high-density reaggregate cultures to support the organotypic reorganization of neurospheres,characterized by surface BMPRⅡ^(+)hNPCs.Our study has provided a new methodology for an in vitro model capable of amplifying human fetal spinal cord cell numbers for>10 passages.Investigations of the role BMPRⅡplays in spinal cord development have primarily relied upon mouse and rat models,with interpolations to human development being derived through inference.Because of significant species differences between murine biology and human,including anatomical dissimilarities in central nervous system(CNS)structure,the findings made in murine models cannot be presumed to apply to human spinal cord development.For these reasons,our human in vitro model offers a novel tool to better understand neurodevelopmental pathways,including BMP signaling,as well as spinal cord injury research and testing drug therapies.
基金supported by NIH grants AR060456 and AR055923(FL)supported by NIH DK105129,DK094989,by DK052574 to the Washington University Digestive Core Centers(DDRCC)+6 种基金by the pre-Program Project Award from the Siteman Cancer Center Investment Programsupported by the NIGMS cell and Molecular Biology Training Grant(GM007067)supported by the NIH funded George O’Brien Center for Kidney Disease Research(P30DK079333)Kidney translational Research Core and the Renal Division at the Washington University School of Medicinesupported by the Alafi Neuroimaging Laboratorythe Hope Center for Neurological DisordersNIH Shared Instrumentation Grant(S10 RR0227552)to Washington University
文摘Cre/loxP technology has been widely used to study cell type-specific functions of genes. Proper interpretation of such data critically depends on a clear understanding of the tissue specificity of Cre expression. The Dmpl- Cre mouse, expressing Cre from a 14-kb DNA fragment of the mouse Dmpl gene, has become a common tool for studying gene function in osteocytes, but the presumed cell specificity is yet to be fully established. By using the Ai9 reporter line that expresses a red fluorescent protein upon Cre recombination, we find that in 2-month-old mice, Dmpl-Cre targets not only osteocytes within the bone matrix but also osteoblasts on the bone surface and preosteoblasts at the metaphyseal chondro-osseous junction. In the bone marrow, Cre activity is evident in certain stromal cells adjacent to the blood vessels, but not in adipocytes. Outside the skeleton, Dmpl-Cre marks not only the skeletal muscle fibers, certain cells in the cerebellum and the hindbrain but also gastric and intestinal mesenchymal cells that express Pdgfra. Confirming the utility of Dmpl-Cre in the gastrointestinal mesenchyme, deletion of Bmprla with Dmpl-Cre causes numerous large polyps along the gastrointestinal tract, consistent with prior work involving inhibition of BMP signaling. Thus, caution needs to be exercised when using Dmpl-Cre because it targets not only the osteoblast lineage at an earlier stage than previously appreciated, but also a number of non-skeletal cell types.
基金supported by grants from the National Natural Science Foundation of China (No. 81572633)
文摘Objective: Bone morphogenetic protein receptor 2(BMPR2) and hypoxia-inducible factor 1-α(HIF1-α) existed abnormal expression in several types of cancer. However, their expressions and related roles in osteosarcoma are largely unknown.Methods:To investigate the clinical significance of BMPR2 and HIF1-αin osteosarcoma,we analyzed their expression levels in 103 osteosarcoma specimens by immunochemistry.Meanwhile,we conducted a follow-up to examine the metastatic behavior and overall survival(OS)of osteosarcoma patients.Results:Among 103 tissues,61 cases had BMPR2-positive expression and 57 cases had HIF1-αpositive expression.A significant correlation was noticed between BMPR2 and HIF1-αexpression in osteosarcoma specimens(P=0.035).Receiver-operating characteristic(ROC)curves were calculated to investigate the predictive value of the two markers in tumor metastasis.By means of univariate and multivariate analysis,BMPR2 and HIF1-αexpression,as well as higher tumor grade,were identified as significant risk factors for OS in patients with osteosarcoma.Kaplan-Meier survival analysis revealed that the patients with BMPR2 and HIF1-αpositive expression had worse OS compared with patients with BMPR2-negative or HIF1-α-negative staining.Conclusions:It can be concluded that BMPR2 and HIF1-αexpression is highly correlated with metastatic behavior in patients with osteosarcoma and can serve as predictive markers for metastasis and OS of these patients.
基金supported by the Guangdong Province Key Foundation of Science and Technology Program (Grant No.2009B0507000029)the Guangdong Province Science and Technology Program (Grant No.2012B031800474)a grant from the Overseas Chinese Affairs Office of the State Council Key Discipline Construction Fund (Grant No.51205002)
文摘Objective: The results of a previous study showed that a clear dysregulation was evident in the global gene expression of the BCL11A-suppressed B-lymphoma cells. In this study, the bone morphogenetic protein receptor, type II(BMPR2), E1 A binding protein p300(EP300), transforming growth factor-β2(TGFβ2), and tumor necrosis factor, and alpha-induced protein 3(TNFAIP3) gene expression patterns in B-cell malignancies were studied. Methods: The relative expression levels of BMPR2, EP300, TGFβ2, and TNFAIP3 mRNA in B-lymphoma cell lines, myeloid cell lines, as well as in cells from healthy volunteers, were determined by real-time quantitative reverse transcriptpolymerase chain reaction(qRT-PCR) with SYBR Green Dye. Glyceraldehyde-3-phosphate dehydrogenase(GAPDH) was used as reference. Results: The expression level of TGFβ2 mRNA in B-lymphoma cell lines was significantly higher than those in the cells from the healthy control(P<0.05). However, the expression level of TNFAIP3 mRNA in B-malignant cells was significantly lower than that of the healthy control(P<0.05). The expression levels of BMPR2 and EP300 mRNA showed no significant difference between B-malignant cell lines and the healthy group(P>0.05). In B-lymphoma cell lines, correlation analyses revealed that the expression of BMPR2 and TNFAIP3(r=0.882, P=0.04) had significant positive relation. The expression levels of BMPR2, EP300, and TNFAIP3 mRNA in cell lines from myeloid leukemia were significantly lower than those in the cells from the healthy control(P<0.05). The expression levels of TGFβ2 mRNA showed no significant difference between myeloid leukemia cell lines and the healthy control or B-malignant cell lines(P>0.05). The expression levels of BMPR2, EP300, and TNFAIP3 mRNA in B-lymphoma cells were significantly higher than those of the myeloid leukemia cells(P<0.05).Conclusion: Different expression patterns of BMPR2, EP300, TGFβ2, and TNFAIP3 genes in B-lymphoma cells exist.
基金This work was supported by Shanghai Children’s HospitalChinese National Natural Science Foundation,No.81371499。
文摘Objective:Pulmonary atresia(PA)is a rare type of complex cyanotic congenital heart defect characterized primarily by an undeveloped pulmonary valve or pulmonary artery.Therefore,defining a disease-causing gene mutation in a pulmonary atresia family is a possible method of genetic counseling,future prenatal diagnosis,and therapeutic approaches for pulmonary atresia.Methods:Blood samples were collected from six PA family members,and genomic DNA was extracted using the QIAamp DNA Blood Mini Kit.Gene detection was performed using a second-generation sequencing gene panel.Results:Genetic testing results indicated that a heterozygous mutation originating from maternal inheritance was detected in the BMPR2 gene of the proband’s genomic DNA.The pathogenic gene was c.2804C>T(p.A935V).The mutation was also detected in the genomic DNA of the proband’s elder brother(III-1),but not in other family members.Conclusion:To the best of our knowledge,this is the first study to report the BMPR2 variant responsible for pulmonary atresia.The frequency of the c.2804C>T(p.A935V)mutation detected in this family is extremely low in the normal population(1/246048).The mutation was highly conserved among different species.Sorting intolerant from tolerant(SIFT)predicts it to be a harmful mutation.