期刊文献+
共找到25,388篇文章
< 1 2 250 >
每页显示 20 50 100
PCA-BP神经网络模型在拖拉机发动机故障诊断中的应用
1
作者 杨健 《农机化研究》 北大核心 2025年第3期254-258,共5页
拖拉机发动机故障诊断是指通过对拖拉机发动机的运行状态、传感器数据等信息进行分析和处理,识别出发动机故障的类型和位置,及时准确地诊断拖拉机发动机故障,对于提高农机装备的使用效率和经济效益具有重要的意义。为此,基于主成分分析(... 拖拉机发动机故障诊断是指通过对拖拉机发动机的运行状态、传感器数据等信息进行分析和处理,识别出发动机故障的类型和位置,及时准确地诊断拖拉机发动机故障,对于提高农机装备的使用效率和经济效益具有重要的意义。为此,基于主成分分析(PCA)算法对拖拉机发动机的传感器数据进行降维处理,并使用BP神经网络对降维后的数据进行分类识别,以实现拖拉机发动机故障的诊断。试验结果表明:PCA-BP神经网络模型可以准确地诊断拖拉机发动机的多种故障,相比于传统的BP神经网络模型,具有更高的准确率和更好的泛化能力,表明PCA-BP神经网络模型在拖拉机发动机故障诊断中具有较大的应用前景。 展开更多
关键词 拖拉机发动机 故障诊断 主成分分析 bp神经网络
下载PDF
特征融合与BP神经网络结合的刀具磨损预测
2
作者 郭宏 徐延 +1 位作者 伊亚聪 胡孔耀 《机械设计与制造》 北大核心 2025年第1期108-111,116,共5页
通过监测刀具磨损情况,能够有效应对生产加工中的意外状况。为了精确监测刀具的磨损状态,提出了一种多传感器特征融合及BP神经网络结合的刀具磨损预测方法。首先对工业加工中采集到的切削力、振动、声发射信号进行小波阈值去噪,然后在... 通过监测刀具磨损情况,能够有效应对生产加工中的意外状况。为了精确监测刀具的磨损状态,提出了一种多传感器特征融合及BP神经网络结合的刀具磨损预测方法。首先对工业加工中采集到的切削力、振动、声发射信号进行小波阈值去噪,然后在时域、频域和时频域内分析并提取特征,再将融合后的各类传感器特征使用Pearson相关系数和主成分分析(PCA)实现数据降维,最后将降维后的融合特征输入搭建好的BP神经网络,通过非线性仿真分析,从而实现刀具磨损量的预测。案例验证表明:与单一传感器预测相比,提出的多传感器特征融合的刀具磨损预测方法误差最小,且决定系数R2达到0.993。 展开更多
关键词 传感器 特征提取 小波去噪 PCA bp神经网络 磨损预测
下载PDF
改进SSA优化BP神经网络的变压器故障诊断
3
作者 汪繁荣 汪筠涵 江俊杰 《现代电子技术》 北大核心 2025年第4期145-150,共6页
变压器故障类型的准确诊断对保障电网的安全与稳定至关重要。针对BP神经网络与麻雀搜索算法(SSA)存在收敛缓慢和易陷入局部极值导致无法准确诊断的问题,提出将改进的麻雀搜索算法(ISSA)优化BP神经网络应用于变压器故障诊断。首先,引入... 变压器故障类型的准确诊断对保障电网的安全与稳定至关重要。针对BP神经网络与麻雀搜索算法(SSA)存在收敛缓慢和易陷入局部极值导致无法准确诊断的问题,提出将改进的麻雀搜索算法(ISSA)优化BP神经网络应用于变压器故障诊断。首先,引入非线性惯性权重和纵横交叉策略,从而提高算法的收敛速度和全局寻优能力;其次,将ISSA与传统SSA在收敛函数上进行对比分析,得到ISSA算法在迭代12次后以52%的准确率收敛,而SSA算法迭代23次后才达到25%的准确率,证明了ISSA在收敛速度和精度方面有明显提高;最后,将ISSA-BP、SSA-BP和BP诊断模型进行对比。实验结果表明,ISSA-BP模型准确率达到了97%,比SSA-BP、BP神经网络模型分别提高了4%和11%,可以认为提出的算法模型在变压器故障诊断领域具有更高的精度与良好的发展前景。 展开更多
关键词 麻雀搜索算法 bp神经网络 变压器 故障诊断 非线性惯性权重 纵横交叉策略
下载PDF
BP神经网络在离心压缩机叶轮优化中的应用
4
作者 董志强 于根亮 +1 位作者 董逸飞 陈义恒 《汽车实用技术》 2025年第2期56-62,共7页
为了提高离心式压缩机叶轮设计效率并降低计算资源消耗,针对遗传算法优化中计算量大、效率低的问题,提出基于改进粒子群优化算法(IPSO)优化BP神经网络的方法。通过少量计算流体动力学(CFD)仿真样本,训练BP神经网络建立效率与叶轮参数的... 为了提高离心式压缩机叶轮设计效率并降低计算资源消耗,针对遗传算法优化中计算量大、效率低的问题,提出基于改进粒子群优化算法(IPSO)优化BP神经网络的方法。通过少量计算流体动力学(CFD)仿真样本,训练BP神经网络建立效率与叶轮参数的映射关系,结合IPSO优化其参数,同时利用遗传算法(GA)确定叶轮的最佳性能参数。研究表明,改进的IPSO算法通过增强粒子群的动态适应性和全局搜索能力,提高了BP神经网络的预测精度和优化效率。优化后的叶轮等熵效率提高1.34%,多变效率提高1.04%,流量增加10.4%。该方法显著提升了离心式压缩机叶轮的设计效率和性能,为复杂流体机械的优化设计提供了新思路。 展开更多
关键词 离心式压缩机 CFD仿真 叶轮参数优化 bp神经网络 遗传算法
下载PDF
基于BP神经网络的机制砂混凝土抗压强度预测
5
作者 张军 崔政新 +1 位作者 裘松立 宋冰泉 《建筑技术》 2025年第1期88-92,共5页
机制砂混凝土强度影响因素复杂,收集国内外权威文献试验数据建立了162组机制砂抗压强度的数据库,利用BP神经网络对机制砂混凝土抗压强度进行预测。采用多层反向传播算法对人工神经网络模型进行训练并预测,发现BP神经网络模型具有良好的... 机制砂混凝土强度影响因素复杂,收集国内外权威文献试验数据建立了162组机制砂抗压强度的数据库,利用BP神经网络对机制砂混凝土抗压强度进行预测。采用多层反向传播算法对人工神经网络模型进行训练并预测,发现BP神经网络模型具有良好的预测和泛化能力,模型的预测值与实测值高度吻合;基于BP神经网络模型分析了石粉含量对机制砂混凝土不同强度等级的影响,发现石粉含量约10%时达到最大值,预测值与实际值的误差在8%以内。深度学习方法可有效提高机制砂混凝土配合比设计的试验效率,降低材料和时间成本。 展开更多
关键词 机制砂混凝土 抗压强度 bp神经网络 石粉含量 配合比设计
下载PDF
GA-BP模型在HSS模型参数取值中的应用
6
作者 张杰 马杰 +2 位作者 陈啸海 钟鹏 王营营 《城市道桥与防洪》 2025年第1期229-235,共7页
小应变硬化土(HSS)模型可以有效反映土的压缩硬化特性和小应变特性,非常适合黄土基坑的数值模拟计算。但是,HSS模型包含了11个硬化土(HS)模型参数和2个小应变参数,而这2个小应变参数往往需要采用试验方法确定,获取过程复杂。为了探讨小... 小应变硬化土(HSS)模型可以有效反映土的压缩硬化特性和小应变特性,非常适合黄土基坑的数值模拟计算。但是,HSS模型包含了11个硬化土(HS)模型参数和2个小应变参数,而这2个小应变参数往往需要采用试验方法确定,获取过程复杂。为了探讨小应变参数的预测方法,采用经过遗传算法优化的BP神经网络模型,即GA-BP神经网络模型,首先根据预设的小应变参数水平经过数值模拟计算得到49组位移数据,然后将得到的数据用于GA-BP神经网络的训练,待GA-BP神经网络的预测误差达到要求之后,再使用实际的位移数据反演得到小应变参数,最后基于预测得到的小应变参数进行数值模拟。结果显示,GA-BP神经网络模型预测的小应变参数在基坑围护结构最大水平位移和地表最大沉降计算方面表现良好,可以应用于实际工程。 展开更多
关键词 岩土工程 遗传算法 HSS模型 bp神经网络 小应变参数 参数反演
下载PDF
基于SSA-BP神经网络的机制砂混凝土氯离子扩散预测
7
作者 邹烽 李贺龙 +6 位作者 杨家雷 谢文 席田 张建新 高凤琴 袁中夏 郑伟 《混凝土》 北大核心 2025年第1期22-26,32,共6页
基于Fick定律的各类混凝土氯离子预测方法因影响因素之间存在耦合或者同质性而难以考虑多个影响因素进行分析。提出了基于麻雀搜索算法神经网络(SSA-BP)的机制砂混凝土氯离子扩散系数的人工智能预测方法。神经网络的拓扑结构设计为包含... 基于Fick定律的各类混凝土氯离子预测方法因影响因素之间存在耦合或者同质性而难以考虑多个影响因素进行分析。提出了基于麻雀搜索算法神经网络(SSA-BP)的机制砂混凝土氯离子扩散系数的人工智能预测方法。神经网络的拓扑结构设计为包含4节点输入层、9节点隐藏层、1节点输出层。以水胶比、环境温度、相对湿度以及粉灰比4个参数作为输入变量,以28 d氯离子扩散系数作为输出变量,通过室内试验得出的数据为样本值,使用决定函数(R2)、均方差(MSE)等对优化前后的两种神经网络模型进行对比分析,并探究不同变量因素对氯离子扩散系数的影响。结果表明:通过引入麻雀算法(SSA)可以弥补BP神经网络全局搜索能力弱的缺点,解决预测结果局部最优的难题,从而提高氯离子扩散的预测准确度。 展开更多
关键词 机制砂混凝土 氯离子 扩散系数 SSA-bp神经网络
下载PDF
基于图像处理和BP神经网络的森林防火无人机系统
8
作者 杨静 《农机化研究》 北大核心 2025年第2期205-209,共5页
对无人机设计方案、图像处理和火焰分割算法的技术原理进行了介绍,并利用BP神经网络对图像中的火焰面积变化率和火焰尖角等特征进行识别,实现了对森林火灾的快速监测。实验结果表明:系统的准确率为98.5%,比普通神经网络的84.5%更高;耗时... 对无人机设计方案、图像处理和火焰分割算法的技术原理进行了介绍,并利用BP神经网络对图像中的火焰面积变化率和火焰尖角等特征进行识别,实现了对森林火灾的快速监测。实验结果表明:系统的准确率为98.5%,比普通神经网络的84.5%更高;耗时仅22 s,比普通神经网络159 s缩短很多。这表明,BP神经网络是更可靠且更有效率的火灾识别方案。 展开更多
关键词 森林防火 无人机 图像处理 bp神经网络
下载PDF
基于改进BP神经网络的烟草收获机械故障诊断研究 被引量:1
9
作者 戴欧阳 胡洪林 《农机化研究》 北大核心 2025年第4期70-76,共7页
烟草收获机械是烟草生产中的重要技术支撑,是提高收获效率的重要保证,但由于烟草收获机械内部结构较为复杂,在使用过程中极易造成机械运行故障。随着大数据及传感器技术的快速发展,基于人工神经网络模型实现机械故障的预测与诊断成为提... 烟草收获机械是烟草生产中的重要技术支撑,是提高收获效率的重要保证,但由于烟草收获机械内部结构较为复杂,在使用过程中极易造成机械运行故障。随着大数据及传感器技术的快速发展,基于人工神经网络模型实现机械故障的预测与诊断成为提高烟草收获机械工作效率的重要技术。目前,主要以BP神经网络模型应用较为广泛,但在模型构建中预测效率低、鲁棒性强。针对以上问题,提出一种改进BP神经网络模型,以烟草收获机械中的齿轮故障诊断为研究对象,构建基于GA-BP神经网络模型的烟草收获机械齿轮故障诊断模型,并通过选取齿轮磨损、胶合、裂纹、断齿和正常齿轮的信号进行试验验证。结果表明:改进后的BP神经网络模型MAPE仅为0.87%,RMSE为1.12,MAE为0.92,MSE为1.19,满足烟草收获生产的实际需要,在模型算法与计算速度方面都得到了很大的提高。 展开更多
关键词 烟草收获 机械故障 遗传算法 bp神经网络 优化模型
下载PDF
基于改进WOA-BP神经网络的电气火灾预警算法
10
作者 颜磊 王国兵 +2 位作者 翁旭峰 刘雪莹 江友华 《电子设计工程》 2025年第1期21-26,共6页
电气火灾是一种严重危害人员安全和财产损失的事件,因此增强对电气火灾的早期预测和预警至关重要。基于提高电气火灾预测准确性的目的,采用了改进鲸鱼算法优化BP神经网络的方法,构建了电气火灾预警模型。使用剩余电流、工作电流电压和... 电气火灾是一种严重危害人员安全和财产损失的事件,因此增强对电气火灾的早期预测和预警至关重要。基于提高电气火灾预测准确性的目的,采用了改进鲸鱼算法优化BP神经网络的方法,构建了电气火灾预警模型。使用剩余电流、工作电流电压和线缆温度作为神经网络的输入特征,结合上述改进方法对权值和阈值进行优化。优化后的参数作为初始参数进行模型训练,用于输出电气火灾的概率。采用电气柜中回路数据进行试验,将预测概率与剩余电流异常持续时间进行模糊化处理,得出火灾决策。研究结果表明,所提模型相关系数达到0.97,相较于传统方法提高了0.08,具有更高的准确性和可靠性。 展开更多
关键词 电气火灾预警 鲸鱼优化算法 bp神经网络 模糊化
下载PDF
Analysis of Factors Related to Vasovagal Response in Apheresis Blood Donors and the Establishment of Prediction Model Based on BP Neural Network Algorithm
11
作者 Xin Hu Hua Xu Fengqin Li 《Journal of Clinical and Nursing Research》 2024年第6期276-283,共8页
Objective:To analyze the factors related to vessel vasovagal reaction(VVR)in apheresis donors,establish a mathematical model for predicting the correlation factors and occurrence risk,and use the prediction model to i... Objective:To analyze the factors related to vessel vasovagal reaction(VVR)in apheresis donors,establish a mathematical model for predicting the correlation factors and occurrence risk,and use the prediction model to intervene in high-risk VVR blood donors,improve the blood donation experience,and retain blood donors.Methods:A total of 316 blood donors from the Xi'an Central Blood Bank from June to September 2022 were selected to statistically analyze VVR-related factors.A BP neural network prediction model is established with relevant factors as input and DRVR risk as output.Results:First-time blood donors had a high risk of VVR,female risk was high,and sex difference was significant(P value<0.05).The blood pressure before donation and intergroup differences were also significant(P value<0.05).After training,the established BP neural network model has a minimum RMS error of o.116,a correlation coefficient R=0.75,and a test model accuracy of 66.7%.Conclusion:First-time blood donors,women,and relatively low blood pressure are all high-risk groups for VVR.The BP neural network prediction model established in this paper has certain prediction accuracy and can be used as a means to evaluate the risk degree of clinical blood donors. 展开更多
关键词 Vasovagal response Related factors Prediction bp neural network
下载PDF
改进粒子群优化算法结合BP神经网络模型的水体透射光谱总磷浓度预测研究
12
作者 张国浩 王彩玲 +1 位作者 王洪伟 于涛 《光谱学与光谱分析》 北大核心 2025年第2期394-402,共9页
使用光谱数据结合融合算法对水体污染物含量进行准确检测以保护水资源已成为一个关键问题。然而,光谱数据的高维特性以及模型的不稳定常常导致预测效果不佳,无法准确的进行检测。本研究提出了一种环保和准确的方法,实现对长江水体中总... 使用光谱数据结合融合算法对水体污染物含量进行准确检测以保护水资源已成为一个关键问题。然而,光谱数据的高维特性以及模型的不稳定常常导致预测效果不佳,无法准确的进行检测。本研究提出了一种环保和准确的方法,实现对长江水体中总磷浓度含量的预测。具体而言,首先对测得的长江水质光谱数据进行最大最小归一化和均值中心化两种预处理操作,在消除不同数据量级差异的同时去除了噪声,确保了数据的一致性和可靠性。其次,为了解决光谱数据的高维度问题,采用了核主成分分析(KPCA)方法来降低数据维度并提取特征。KPCA方法通过在高维度的空间中找到一个分类平面,选出能代表原始数据99.42%信息量的前6个主成分,用于后续预测模型的训练。接着在原始粒子群算法的基础上引入了粒子初始化规则、多种群竞争策略、参数自适应更新策略、种群多样性引导策略和粒子变异机制,提高了粒子群的寻优能力,降低粒子陷入局部最优解的概率。并使用改进后的粒子群算法对BP神经网络(BPNN)中的初始化权重和参数大小进行寻优,从而加快网络的收敛效果,提高预测能力。最后,使用本研究所提出的预测模型对测试集中的样本进行总磷浓度的预测,实验结果得到R^(2)为0.975786,RMSE为0.002242,MAE为0.001612。将本模型与当前预测性能较好的其他基准模型进行预测效果的对比,本研究所提出的模型对长江水体总磷浓度预测拟合效果更好,精确度更高。在水资源保护和环境管理领域中使用光谱数据结合融合算法进行预测模型的研究和实践提供了新的思路和观点。 展开更多
关键词 光谱数据 改进粒子群优化算法 bp神经网络模型 核主成分分析(KPCA) 总磷浓度
下载PDF
基于PSO-BP模糊PID的变距取苗机构控制系统设计
13
作者 李润泽 王卫兵 李小军 《农机化研究》 北大核心 2025年第2期9-18,共10页
为满足番茄、辣椒等蔬菜作物的移栽需求,基于向下取苗原理设计了一种适用72穴和128穴两种主要番茄钵苗穴盘规格的变距取苗机构,通过建立数学模型获得了取苗机械手参数的目标函数,并利用粒子群和模拟退火混合算法对其结构参数进行优化。... 为满足番茄、辣椒等蔬菜作物的移栽需求,基于向下取苗原理设计了一种适用72穴和128穴两种主要番茄钵苗穴盘规格的变距取苗机构,通过建立数学模型获得了取苗机械手参数的目标函数,并利用粒子群和模拟退火混合算法对其结构参数进行优化。同时,为实现变距取苗机构的精确控制,提出了一种基于PSO-BP的模糊PID算法以提高控制精度,介绍了系统的结构与工作原理,并通过选型计算与分析建模建立了控制系统的数学模型。针对传统PID控制器稳定性差、响应速度慢等不足之处,利用PSO-BP模糊PID对控制器的参数进行在线调整,以满足控制过程中对参数的不同需求。仿真结果与试验数据的分析表明:在参数相同条件下,基于PSO-BP模糊PID控制系统系统稳定性更好、响应速度更快,具有良好的鲁棒性,提升取苗成功率的同时降低了基质损伤率,能够满足变距取苗机构高精度快速稳定控制的需求。 展开更多
关键词 变距取苗机构 PSO-bp神经网络 模糊PID算法 控制系统
下载PDF
基于GM(1,1)-BP神经网络的建筑电力短期预测
14
作者 宋杨 顾亦然 张腾飞 《软件导刊》 2025年第1期9-14,共6页
随着国家“双碳”目标的提出,公共建筑节约能源愈发重要,建筑电力数据短期预测有助于合理调控用电。为此,提出一种结合灰色模型GM(1,1)和BP神经网络的组合预测模型。首先,通过灰色关联筛选数据,根据灰色模型仅需少量样本的优点,预测出... 随着国家“双碳”目标的提出,公共建筑节约能源愈发重要,建筑电力数据短期预测有助于合理调控用电。为此,提出一种结合灰色模型GM(1,1)和BP神经网络的组合预测模型。首先,通过灰色关联筛选数据,根据灰色模型仅需少量样本的优点,预测出短期内的用电数据;其次,将预测结果作为BP神经网络的输入变量,通过网络反向学习原始数据与GM(1,1)预测值的差值,提高模型的预测精度。以高校公共建筑用电数据为研究目标,通过组合模型预测下一阶段用电,并与4种预测模型进行比较。结果表明,该组合模型预测误差最小,准确性最高。 展开更多
关键词 灰色模型 bp神经网络 电力预测 建筑节能
下载PDF
基于BP神经网络的压力传感器原位温度补偿技术
15
作者 刘雨桥 张姝 +4 位作者 雷程 余建刚 唐梦璇 王涛龙 梁庭 《测试技术学报》 2025年第1期13-19,共7页
由于压阻式压力传感器存在温度漂移,而现有的软件温度补偿方法依赖额外的温度传感器获取温度信号。为了简化这一流程,提出了一种基于BP神经网络的压力传感器原位温度补偿方法。利用多参数测量方法,仅依赖压力传感器自身的电学信号,无需... 由于压阻式压力传感器存在温度漂移,而现有的软件温度补偿方法依赖额外的温度传感器获取温度信号。为了简化这一流程,提出了一种基于BP神经网络的压力传感器原位温度补偿方法。利用多参数测量方法,仅依赖压力传感器自身的电学信号,无需引入新的传感器,便能实现对传感器原位温度及压力的测量;进一步通过BP神经网络实现压力传感器温-压解耦及温度补偿。结果显示,补偿后传感器输出误差降低至±0.5%FS以内,零位温度漂移从0.021%FS/℃降低到0.002 5%FS/℃,灵敏度温度漂移从0.15%FS/℃降低到0.005 5%FS/℃,显著降低了零位温度漂移和灵敏度温度漂移。 展开更多
关键词 压力传感器 温度补偿 多参数测量 bp神经网络
下载PDF
基于BP神经网络的EHB主缸液压力估计
16
作者 史彪飞 王磊 +2 位作者 梁海强 李荣利 梁超 《汽车技术》 北大核心 2025年第1期57-62,共6页
电子液压制动(EHB)系统主缸液压力估计对降低EHB的传感器依赖性至关重要,基于BP神经网络进行主缸液压力估计。首先开展了实车道路试验,并采集车速、主缸活塞位移、主缸活塞速度和主缸液压力等数据。然后,以主缸活塞位移和主缸活塞速度... 电子液压制动(EHB)系统主缸液压力估计对降低EHB的传感器依赖性至关重要,基于BP神经网络进行主缸液压力估计。首先开展了实车道路试验,并采集车速、主缸活塞位移、主缸活塞速度和主缸液压力等数据。然后,以主缸活塞位移和主缸活塞速度为特征输入、以实际主缸液压力为目标输出建立BP神经网络,并采用训练集数据及梯度下降算法对BP神经网络进行训练。最后,利用测试集数据对液压力估计效果进行验证。结果表明,所提算法比基于动态位移压力模型和基于LSTM的估计算法估计误差分别减小38%和15%。 展开更多
关键词 电子液压制动 主缸液压力估计 位移压力模型 bp 神经网络
下载PDF
基于GA-BP神经网络岩石单轴抗压强度预测模型研究
17
作者 张奥宇 杨科 +1 位作者 池小楼 张杰 《煤》 2025年第1期6-10,17,共6页
为探究更为精确的上覆岩层砂岩和泥岩单轴抗压强度与其弹性模量之间的关联性,结合胡家河矿56组砂岩和泥岩单轴抗压强度与弹性模量历史数据,运用遗传算法优化了BP神经网络的结构参数和学习参数,得到了最佳的网络结构和参数设置,利用GA-B... 为探究更为精确的上覆岩层砂岩和泥岩单轴抗压强度与其弹性模量之间的关联性,结合胡家河矿56组砂岩和泥岩单轴抗压强度与弹性模量历史数据,运用遗传算法优化了BP神经网络的结构参数和学习参数,得到了最佳的网络结构和参数设置,利用GA-BP神经网络对煤矿砂岩与泥岩单轴抗压强度进行了预测,并与传统的BP神经网络和非线性回归分析法进行了比较。研究结果表明,GA-BP神经网络预测模型在预测砂岩和泥岩单轴抗压强度与弹性模量间关系上具有较高的精度和泛化能力,能够有效地解决传统BP神经网络的局部最优和过拟合问题,相较于非线性回归分析,拥有更强的非线性关系建模能力,是一种适用于砂岩与泥岩单轴抗压强度预测的有效方法。 展开更多
关键词 岩石力学参数 非线性回归 bp神经网络 遗传算法 预测模型
下载PDF
基于PSO与BP神经网络的磁共振成像设备故障诊断研究
18
作者 方佩玺 张姚昕 赵媛 《机械设计与制造工程》 2025年第1期85-90,共6页
针对磁共振成像设备故障诊断准确性和效率低的问题,提出一种基于粒子群优化算法与反向传播神经网络结合邓普斯特-谢弗证据理论的故障诊断模型。该模型通过粒子群优化算法优化反向传播神经网络的参数,并结合邓普斯特-谢弗证据理论融合多... 针对磁共振成像设备故障诊断准确性和效率低的问题,提出一种基于粒子群优化算法与反向传播神经网络结合邓普斯特-谢弗证据理论的故障诊断模型。该模型通过粒子群优化算法优化反向传播神经网络的参数,并结合邓普斯特-谢弗证据理论融合多传感器数据。实验结果表明,10种故障类型下所提模型的故障检测正确率为100%,对10种不同类型故障的平均检测准确率达96.2%,单样本检测耗时为17.5 ms。 展开更多
关键词 粒子群优化算法 反向传播神经网络 磁共振成像设备 故障诊断 邓普斯特-谢弗证据理论
下载PDF
基于GA-BP神经网络的地源热泵空调负荷预测及实例验证
19
作者 张学泽 秦景 +3 位作者 陈晓飞 杨子劼 孙兴国 刘喆 《仪表技术》 2025年第1期57-60,共4页
针对当前建筑供热负荷预测模型预测精度低和能源利用率不高的问题,以及BP神经网络负荷预测方法存在的预测精度不高、易陷入局部最优等缺陷,采用GA-BP神经网络进行负荷预测。首先建立GA-BP神经网络模型,然后对采集到的数据进行处理,最后... 针对当前建筑供热负荷预测模型预测精度低和能源利用率不高的问题,以及BP神经网络负荷预测方法存在的预测精度不高、易陷入局部最优等缺陷,采用GA-BP神经网络进行负荷预测。首先建立GA-BP神经网络模型,然后对采集到的数据进行处理,最后将该模型应用于北京某办公建筑的集中供热系统。验证数据显示,GA-BP神经网络负荷预测模型的总体平均相对误差为6.9%,预测的相对误差绝对值范围在6%~8%之间,显示出更高的预测精度。应用效果表明,GA-BP神经网络负荷预测模型相较于BP神经网络模型,能够更为精确地预测未来24h的逐时负荷。 展开更多
关键词 地源热泵系统 遗传算法 bp神经网络 逐时负荷预测 用户侧
下载PDF
基于BP神经网络的六角编织机控制策略
20
作者 付睿云 周炯 吴垠舟 《毛纺科技》 北大核心 2025年第1期104-110,共7页
为提高六角编织机控制系统的抗干扰能力,研究六角编织机的编织原理,提出一种BP(Back Propagation)神经网络与PID相融的编织控制策略,设计多电动机并行同步控制的方案,借助Simulink工具搭建六角编织机控制系统的仿真模型。仿真结果表明:... 为提高六角编织机控制系统的抗干扰能力,研究六角编织机的编织原理,提出一种BP(Back Propagation)神经网络与PID相融的编织控制策略,设计多电动机并行同步控制的方案,借助Simulink工具搭建六角编织机控制系统的仿真模型。仿真结果表明:与传统PID控制相比,BP-PID控制策略峰值时间下降0.032 s,最大超调量缩减0.272%,调整时间缩短0.524 s。并在0.5 s引入干扰,BP-PID算法显出更快的响应速度、更小的超调量和更强抗干扰能力。借助实际的六角编织机,从单电动机卡顿率、单次编织卡顿率和产品合格率3个指标验证了BP-PID控制策略有效性,提高编织物产品合格率。 展开更多
关键词 六角编织机 步进旋转式 bp神经网络 PID自整定
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部