期刊文献+
共找到23,311篇文章
< 1 2 250 >
每页显示 20 50 100
TAX1BP1 and FIP200 orchestrate non-canonical autophagy of p62 aggregates for mouse neural stem cell maintenance
1
作者 Yi-Fu Zhu Rong-Hua Yu +15 位作者 Shuai Zhou Pei-Pei Tang Rui Zhang Yu-Xin Wu Ran Xu Jia-Ming Wei Ying-Ying Wang Jia-Li Zhang Meng-Ke Li Xiao-Jing Shi Yu-Wei Zhang Guang-Zhi Liu Rick FThorne Xu Dong Zhang Mian Wu Song Chen 《Zoological Research》 SCIE CSCD 2024年第4期937-950,共14页
Autophagy plays a pivotal role in diverse biological processes,including the maintenance and differentiation of neural stem cells(NSCs).Interestingly,while complete deletion of Fip200 severely impairs NSC maintenance ... Autophagy plays a pivotal role in diverse biological processes,including the maintenance and differentiation of neural stem cells(NSCs).Interestingly,while complete deletion of Fip200 severely impairs NSC maintenance and differentiation,inhibiting canonical autophagy via deletion of core genes,such as Atg5,Atg16l1,and Atg7,or blockade of canonical interactions between FIP200 and ATG13(designated as FIP200-4A mutant or FIP200 KI)does not produce comparable detrimental effects.This highlights the likely critical involvement of the non-canonical functions of FIP200,the mechanisms of which have remained elusive.Here,utilizing genetic mouse models,we demonstrated that FIP200 mediates non-canonical autophagic degradation of p62/sequestome1,primarily via TAX1BP1 in NSCs.Conditional deletion of Tax1bp1 in fip200hGFAP conditional knock-in(cKI)mice led to NSC deficiency,resembling the fip200hGFAP conditional knockout(cKO)mouse phenotype.Notably,reintroducing wild-type TAX1BP1 not only restored the maintenance of NSCs derived from tax1bp1-knockout fip200hGFAP cKI mice but also led to a marked reduction in p62 aggregate accumulation.Conversely,a TAX1BP1 mutant incapable of binding to FIP200 or NBR1/p62 failed to achieve this restoration.Furthermore,conditional deletion of Tax1bp1 in fip200hGFAP cKO mice exacerbated NSC deficiency and p62 aggregate accumulation compared to fip200hGFAP cKO mice.Collectively,these findings illustrate the essential role of the FIP200-TAX1BP1 axis in mediating the non-canonical autophagic degradation of p62 aggregates towards NSC maintenance and function,presenting novel therapeutic targets for neurodegenerative diseases. 展开更多
关键词 Non-canonical autophagy TAX1bp1 FIP200 P62 AGGREGATES neural stem cell
下载PDF
Analysis of Factors Related to Vasovagal Response in Apheresis Blood Donors and the Establishment of Prediction Model Based on BP Neural Network Algorithm
2
作者 Xin Hu Hua Xu Fengqin Li 《Journal of Clinical and Nursing Research》 2024年第6期276-283,共8页
Objective:To analyze the factors related to vessel vasovagal reaction(VVR)in apheresis donors,establish a mathematical model for predicting the correlation factors and occurrence risk,and use the prediction model to i... Objective:To analyze the factors related to vessel vasovagal reaction(VVR)in apheresis donors,establish a mathematical model for predicting the correlation factors and occurrence risk,and use the prediction model to intervene in high-risk VVR blood donors,improve the blood donation experience,and retain blood donors.Methods:A total of 316 blood donors from the Xi'an Central Blood Bank from June to September 2022 were selected to statistically analyze VVR-related factors.A BP neural network prediction model is established with relevant factors as input and DRVR risk as output.Results:First-time blood donors had a high risk of VVR,female risk was high,and sex difference was significant(P value<0.05).The blood pressure before donation and intergroup differences were also significant(P value<0.05).After training,the established BP neural network model has a minimum RMS error of o.116,a correlation coefficient R=0.75,and a test model accuracy of 66.7%.Conclusion:First-time blood donors,women,and relatively low blood pressure are all high-risk groups for VVR.The BP neural network prediction model established in this paper has certain prediction accuracy and can be used as a means to evaluate the risk degree of clinical blood donors. 展开更多
关键词 Vasovagal response Related factors Prediction bp neural network
下载PDF
正交实验结合AHP和GA-BP神经网络优化益黄散醇提工艺 被引量:1
3
作者 王巍 杨武杰 +4 位作者 韩宇 安悦言 郝季 张强 鞠成国 《中国药房》 CAS 北大核心 2024年第3期327-332,共6页
目的 优化益黄散的醇提工艺。方法 采用回流提取法,以乙醇体积分数、液料比、提取时间为考察因素设计正交实验,以橙皮苷、川陈皮素、橘皮素、没食子酸、诃黎勒酸、诃子酸、甘草苷、甘草酸、丁香酚含量和干浸膏得率为指标,采用层次分析法... 目的 优化益黄散的醇提工艺。方法 采用回流提取法,以乙醇体积分数、液料比、提取时间为考察因素设计正交实验,以橙皮苷、川陈皮素、橘皮素、没食子酸、诃黎勒酸、诃子酸、甘草苷、甘草酸、丁香酚含量和干浸膏得率为指标,采用层次分析法(AHP)进行赋权并计算综合评分。通过验证正交实验和遗传算法(GA)-反向传播神经网络(BP神经网络)所预测的结果确定益黄散最佳醇提工艺参数。结果 正交实验优选的最佳醇提工艺参数为乙醇体积分数60%、液料比14∶1(mL/g)、提取时间90 min、提取2次,验证所得综合评分为79.19分;GA-BP神经网络优选的最佳醇提工艺参数为乙醇体积分数65%、液料比14∶1(mL/g)、提取时间60 min、提取2次,验证所得综合评分为85.30分,高于正交实验所得结果。结论 采用正交实验结合GA-BP神经网络的寻优方法较传统的正交实验寻优方法效果更佳,其优选出的益黄散最佳醇提工艺稳定可靠。 展开更多
关键词 益黄散 醇提工艺 正交实验 遗传算法 bp神经网络 层次分析法
下载PDF
基于小波变换和GA-BP神经网络的电力电缆故障定位 被引量:1
4
作者 徐先峰 马志雄 +2 位作者 姚景杰 李芷菡 王轲 《电气工程学报》 CSCD 北大核心 2024年第2期146-155,共10页
由于电力电缆敷设于地下,当发生故障时难以快速且准确定位,出现了故障定位问题。因此,提出一种基于小波变换和遗传算法反向传播(Genetic algorithm back propagation,GA-BP)神经网络的电力电缆故障定位方法,在分析对比各小波能量集中程... 由于电力电缆敷设于地下,当发生故障时难以快速且准确定位,出现了故障定位问题。因此,提出一种基于小波变换和遗传算法反向传播(Genetic algorithm back propagation,GA-BP)神经网络的电力电缆故障定位方法,在分析对比各小波能量集中程度和波动次数的基础上,选择多贝西小波(Daubechies wavelet 6,Db6)作为小波基函数,对于各故障位置,采集正向故障行波的α模分量,并对其进行小波分解。选取在d1尺度下的模极大值点作为特征值,同时将故障距离作为标签值,从而构建了训练和测试样本数据集;利用遗传算法(Genetic algorithm,GA)的种群进化和全局最优搜寻能力来改善误差逆传播(Back propagation,BP)网络对初始权重敏感的缺点,并使用优化后的权值、阈值重新对BP神经网络进行训练和预测,最后通过与传统双端行波定位算法、BP算法、粒子群优化BP算法(Particle swarm optimization BP,PSO-BP)相比较,证明了所提方法在测距性能方面的优越性。 展开更多
关键词 小波变换 模极大值 双端测距 bp神经网络 PSO-bp神经网络 GA-bp神经网络
下载PDF
基于BP神经网络的九寨沟地区地震滑坡危险性预测研究 被引量:3
5
作者 张迎宾 徐佩依 +6 位作者 林剑锋 伍新南 柳静 相晨琳 何云勇 杨昌凤 许冲 《工程地质学报》 CSCD 北大核心 2024年第1期133-145,共13页
BP神经网络因具有良好的精度和拟合能力,被广泛地运用在区域性滑坡危险性预测中。本文建立了基于BP神经网络的地震滑坡危险性评价模型并应用于四川九寨沟地区,以2017年8月8日的九寨沟MS7.0地震引发的4834个历史滑坡为例,将其随机划分为... BP神经网络因具有良好的精度和拟合能力,被广泛地运用在区域性滑坡危险性预测中。本文建立了基于BP神经网络的地震滑坡危险性评价模型并应用于四川九寨沟地区,以2017年8月8日的九寨沟MS7.0地震引发的4834个历史滑坡为例,将其随机划分为70%的训练样本集用于九寨沟地区地震滑坡危险性预测,以及30%的验证样本集对预测结果的精度进行评估。选取高程、坡度、坡向、平行发震断层距离、垂直发震断层距离、震中距离、距道路距离、地面峰值加速度(PGA)以及岩性共9个影响因子,分析发震断层对地震滑坡的控制作用,并总结九寨沟地区地震滑坡空间分布规律特征,其中发震断层、岩性和坡度对九寨沟地区地震滑坡分布产生重要影响。利用模型得到九寨沟地震滑坡危险性预测图,结果显示73.19%的滑坡位于极高和高危险区域,与实际地震滑坡分布基本相符。通过30%的验证样本集来绘制预测成功率曲线,结果表明模型预测成功率(AUC值)为0.90,证实了BP神经网络在九寨沟地区地震滑坡危险性预测中具有良好的精度和拟合能力,评价结果为后续地震滑坡灾害预测和防震减灾工作提供了科学的参考。 展开更多
关键词 九寨沟地区 bp神经网络 地震滑坡 危险性评价
下载PDF
基于BP神经网络的高桩码头基桩损伤识别研究 被引量:1
6
作者 郑永来 肖飞 +1 位作者 潘坦博 韩雨莘 《建筑技术》 2024年第3期371-376,共6页
针对高桩码头基桩的损伤识别问题,基于BP神经网络开展了损伤定位研究。传统损伤定位方法在识别过程中受到人为主观因素的干扰,且对于只有一阶模态数据的情况定位效果有限。为克服这些问题,构建了不受人为因素影响的损伤定位神经网络,以... 针对高桩码头基桩的损伤识别问题,基于BP神经网络开展了损伤定位研究。传统损伤定位方法在识别过程中受到人为主观因素的干扰,且对于只有一阶模态数据的情况定位效果有限。为克服这些问题,构建了不受人为因素影响的损伤定位神经网络,以第三类损伤指标ULSC和δFC作为训练样本,实现了对基桩局部损伤的准确定位。在建立合理的高桩码头有限元模型的基础上,构建了基于BP神经网络的损伤定位模型,并使用ABAQUS模拟数据和实测振动信号数据进行训练和测试。实验结果表明,该神经网络模型具有较高的定位准确性和鲁棒性,在不同损伤工况和10%噪声水平下仍表现优异。 展开更多
关键词 bp神经网络 损伤识别 基桩损伤 健康监测
下载PDF
基于拌和生产数据的BP神经网络混凝土抗压强度预测 被引量:1
7
作者 王海英 李子彤 +1 位作者 张英治 王晨光 《建筑科学与工程学报》 CAS 北大核心 2024年第3期18-25,共8页
为解决混凝土生产中抗压强度试验周期长及工程管理存在滞后性的问题,提出了一种基于混凝土拌和生产实时监控数据的BP神经网络混凝土抗压强度预测模型。以混凝土拌和生产中的8项物料生产称重数据和5项生产配比数据作为预测输入变量,建立... 为解决混凝土生产中抗压强度试验周期长及工程管理存在滞后性的问题,提出了一种基于混凝土拌和生产实时监控数据的BP神经网络混凝土抗压强度预测模型。以混凝土拌和生产中的8项物料生产称重数据和5项生产配比数据作为预测输入变量,建立200组混凝土拌和站生产监控数据和对应的抗压强度试验数据样本集,按照6∶2∶2比例划分为训练集、验证集和测试集;分别以C40配比混凝土拌和生产的8项物料称重数据和全部13项数据作为输入变量,进行混凝土28 d抗压强度预测,将预测结果与实际试验结果进行比较,验证所提出BP神经网络模型的预测效果。结果表明:所提出的BP神经网络混凝土强度预测模型能较好地实时预测混凝土28 d抗压强度,且相对误差优于利用7 d抗压强度试验数据估算值;8项物料称重数据作为输入变量的BP神经网络预测模型预测精度更好,平均绝对百分比误差为0.82%,均方根误差为0.52 MPa;利用不同拌和站C20配比、C30配比混凝土拌和生产监控数据对8项输入变量BP神经网络混凝土抗压强度预测模型进行适应性验证可知,其预测平均绝对误差均在0.5 MPa之内,平均绝对百分比误差均小于2%,与C40配比预测误差一致;该预测模型充分挖掘了混凝土拌和站生产实时监控数据的价值,实现了传统混凝土抗压试验结果提前化,对提高工程建设质量水平具有重要意义。 展开更多
关键词 混凝土 预测模型 bp神经网络 抗压强度 拌和生产监控数据
下载PDF
基于CSSA-BPNN模型的胶结充填体动态抗压强度预测 被引量:1
8
作者 王小林 梅佳伟 +3 位作者 郭进平 卢才武 王颂 李泽峰 《有色金属工程》 CAS 北大核心 2024年第2期92-101,共10页
充填采矿法二步骤回采时胶结充填体稳定性受爆破扰动而降低。为快速准确地获得充填体动态抗压强度,利用分离式霍普金森压杆(SHPB)进行了40组不同应变率的单轴冲击实验,以灰砂比、充填体密度、养护龄期和平均应变率作为输入参数,充填体... 充填采矿法二步骤回采时胶结充填体稳定性受爆破扰动而降低。为快速准确地获得充填体动态抗压强度,利用分离式霍普金森压杆(SHPB)进行了40组不同应变率的单轴冲击实验,以灰砂比、充填体密度、养护龄期和平均应变率作为输入参数,充填体动态抗压强度作为输出参数,建立了一种基于Logistic混沌麻雀搜索算法(CSSA)优化BP神经网络(BPNN)的预测模型,并与传统BPNN和麻雀搜索算法优化的BPNN进行了对比分析。结果表明:CSSA-BPNN模型的平均相对误差为4.11%,预测值与实测值之间拟合的相关系数均在0.96以上,模型预测精度高。CSSA-BPNN模型的均方根误差为0.395 0 MPa,平均绝对误差为0.359 2 MPa,决定系数为0.995 2,均优于另外两种预测模型。实现了对充填体动态抗压强度的准确预测,可大幅减小物理实验量,为矿山胶结充填体的强度设计提供了一种新方法。 展开更多
关键词 混沌麻雀搜索算法(CSSA) bp神经网络(bpNN) 胶结充填体 分离式霍普金森压杆(SHPB) 动态抗压强度
下载PDF
基于PSO-BP神经网络的分拣机器人视觉反馈跟踪 被引量:1
9
作者 杨静宜 白向伟 《国外电子测量技术》 2024年第1期166-172,共7页
针对分拣机器人视觉反馈跟踪精度差、耗时较长的问题,研究基于粒子群算法-反向传播(particle swarm optimization-back propagation,PSO-BP)神经网络的分拣机器人视觉反馈跟踪方法,以提升视觉反馈跟踪效果。依据分拣机器人的视觉反馈信... 针对分拣机器人视觉反馈跟踪精度差、耗时较长的问题,研究基于粒子群算法-反向传播(particle swarm optimization-back propagation,PSO-BP)神经网络的分拣机器人视觉反馈跟踪方法,以提升视觉反馈跟踪效果。依据分拣机器人的视觉反馈信息,建立分拣机器人运动学模型,并求解分拣机器人机械臂输出位置和输入位置的误差函数;利用PSO算法优化BP神经网络的权值与偏置;在权值与偏置优化后的BP神经网络内,输入误差函数,预测分拣机器人视觉反馈跟踪控制量;利用预测视觉反馈跟踪控制量,在线调整增量式比例-积分-微分(proportional-integral-derivative,PID)的参数,输出高精度的分拣机器人视觉反馈跟踪控制量,实现分拣机器人视觉反馈跟踪。实验结果表明,该方法可有效视觉反馈跟踪分拣机器人机械臂的关节角;存在干扰情况下,在运行时间为10 s左右时,阶跃响应趋于稳定;有干扰情况下,视觉反馈跟踪的平均误差为0.09 cm,耗时平均值为0.10 ms;无干扰情况下,平均误差为0.03 cm,耗时平均值为0.04 ms。 展开更多
关键词 PSO-bp神经网络 分拣机器人 视觉反馈跟踪 运动学模型 误差函数 增量式PID
下载PDF
基于泥水平衡盾构掘进参数的PSO-BP神经网络掘进地层识别模型研究 被引量:1
10
作者 陈志鼎 李小龙 +2 位作者 李广聪 万山涛 董亿 《水电能源科学》 北大核心 2024年第2期67-71,共5页
为解决泥水平衡盾构机在掘进时无法准确地实时识别掘进地层的问题,以珠三角水资源配置工程为例,研究泥水平衡盾构机的盾构推力、掘进速度、刀盘转速、刀盘扭矩在不同地层下的变化规律,提出基于掘进参数的PSO-BP神经网络掘进地层识别方法... 为解决泥水平衡盾构机在掘进时无法准确地实时识别掘进地层的问题,以珠三角水资源配置工程为例,研究泥水平衡盾构机的盾构推力、掘进速度、刀盘转速、刀盘扭矩在不同地层下的变化规律,提出基于掘进参数的PSO-BP神经网络掘进地层识别方法,建立盾构推力、掘进速度、刀盘转速、刀盘扭矩4种掘进参数为输入集,地层编码为输出集的地层识别模型。工程数据的验证结果表明,该模型在珠三角水资源配置工程数据集上的掘进地层的识别准确率达99.07%,PSO-BP神经网络算法的识别准确率明显高于BP、RF、RBF、CNN等机械学习算法。 展开更多
关键词 泥水平衡盾构机 掘进参数 地层识别 PSO-bp神经网络
下载PDF
基于GA-BP神经网络模型预测水基炭黑-胶原蛋白纳米流体热导率和黏度
11
作者 李凯 魏鹤琳 +6 位作者 尹志凡 左夏华 于晓宇 尹宏远 杨卫民 阎华 安瑛 《化工进展》 EI CAS CSCD 北大核心 2024年第7期4138-4147,共10页
纳米流体由于其独特的强化传热性能,已广泛应用于各个领域。而热导率和黏度直接影响纳米流体在实际工程中的适用性,因此在考察纳米流体的强化传热特性前首先要分析研究其热导率和黏度。本研究利用炭黑和胶原蛋白,采用两步法制备了水基... 纳米流体由于其独特的强化传热性能,已广泛应用于各个领域。而热导率和黏度直接影响纳米流体在实际工程中的适用性,因此在考察纳米流体的强化传热特性前首先要分析研究其热导率和黏度。本研究利用炭黑和胶原蛋白,采用两步法制备了水基炭黑胶原蛋白纳米流体。实验分析了炭黑和胶原蛋白质量分数、温度对纳米流体热导率和黏度的影响。采用灰色关联方法对这些参数的权重进行了数学计算,基于实验数据建立了三输入两输出的BP神经网络预测模型,并利用遗传算法(GA)对BP模型进行优化。结果表明,遗传算法优化后的BP神经网络模型对预测输出具有更高的准确性和更好的稳定性,回归系数和最大偏差分别为0.99918和0.002。本研究不仅对于理解和控制水基炭黑-胶原蛋白纳米流体的热物理性能有重要意义,而且为工程设计和材料科学等方面的应用提供了新思路。 展开更多
关键词 纳米流体 炭黑 胶原蛋白 bp神经网络 热导率 黏度
下载PDF
双循环背景下石化企业供应链韧性评价研究——基于AHP-BP方法 被引量:1
12
作者 赵丽洲 张宁峰 《辽宁石油化工大学学报》 CAS 2024年第1期89-96,共8页
随着环境不确定性的提高,中国石化企业供应链稳定性需求日渐攀升,供应链韧性评价已经成为判断石化企业风险应对能力的重要手段。基于双循环背景,通过构建石化企业供应链韧性评估指标体系,利用层次分析法和BP神经网络,对石化企业供应链... 随着环境不确定性的提高,中国石化企业供应链稳定性需求日渐攀升,供应链韧性评价已经成为判断石化企业风险应对能力的重要手段。基于双循环背景,通过构建石化企业供应链韧性评估指标体系,利用层次分析法和BP神经网络,对石化企业供应链韧性强度进行评估,确定了供应链韧性水平。结果表明,各石化企业的供应链韧性强度存在较大差异,供应链韧性整体水平偏低。在研究结果的基础上,对韧性供应链锻造提出了切实可行的建议。 展开更多
关键词 石化企业 供应链韧性 层次分析法 bp神经网络算法
下载PDF
基于BP神经网络算法的异步电机故障诊断系统研究 被引量:1
13
作者 孙吴松 《荆楚理工学院学报》 2024年第2期1-10,共10页
为了确保电机安全可靠地运行,研究了BP神经网络算法对异步电动机进行故障诊断。通过MATLAB平台,分别使用附加动量因子和自适应学习率两种梯度下降法进行网络训练,搭建故障诊断BP网络模型。以MSE值为指标优化最佳隐含层节点数、动量因子... 为了确保电机安全可靠地运行,研究了BP神经网络算法对异步电动机进行故障诊断。通过MATLAB平台,分别使用附加动量因子和自适应学习率两种梯度下降法进行网络训练,搭建故障诊断BP网络模型。以MSE值为指标优化最佳隐含层节点数、动量因子与学习率,并通过遗传算法来优化BP网络的初始权值,对故障测试样本进行仿真测试。结果表明,GA-BP网络模型比MF-BP和AG-BP的MSE值更低,仅为0.009163,优化后的诊断预测结果与目标值几乎没有差别。基于遗传算法改进的故障诊断系统模型能够满足异步电动机故障诊断的应用需求。 展开更多
关键词 故障诊断 MATLAB bp神经网络 遗传算法 网络优化
下载PDF
交通荷载下煤矸石路基填料累积变形PSO-BP神经网络预测模型 被引量:1
14
作者 张宗堂 肖天祥 +2 位作者 高文华 杨洋 衣利伟 《水利水电科技进展》 CSCD 北大核心 2024年第2期87-91,共5页
基于煤矸石路基填料大型动三轴试验结果,采用灰色关联分析法分析累积变形影响因子,确定了围压、压实度、级配参数、循环荷载振动次数4个特征参数。引入PSO算法对BP神经网络的权重、阈值进行全局寻优并赋值,提出了一种煤矸石路基填料累... 基于煤矸石路基填料大型动三轴试验结果,采用灰色关联分析法分析累积变形影响因子,确定了围压、压实度、级配参数、循环荷载振动次数4个特征参数。引入PSO算法对BP神经网络的权重、阈值进行全局寻优并赋值,提出了一种煤矸石路基填料累积变形PSO-BP神经网络预测模型。与传统BP神经网络模型对比结果验证了该预测模型的可行性和优越性,并通过不同学习程度下模型的预测效果分析了模型的泛化能力,证明了模型的预测潜力。 展开更多
关键词 煤矸石路基 累积变形预测 灰色关联分析 粒子群算法 bp神经网络
下载PDF
基于BP神经网络的高校教师精准教学能力评价模型构建
15
作者 魏培文 朱珂 +3 位作者 叶海智 张潍杰 张利远 闫娟 《河南师范大学学报(自然科学版)》 CAS 北大核心 2024年第5期108-116,共9页
通过精准教学以促进学生个性化成长是教育理想和国家政策的不懈追求.高校教师是实施精准教学的“基”,现有关于其教学能力的评价体系中普遍存在概念不清和多采用主观构建评价指标的问题.为此,开展了基于BP神经网络的高校教师精准教学能... 通过精准教学以促进学生个性化成长是教育理想和国家政策的不懈追求.高校教师是实施精准教学的“基”,现有关于其教学能力的评价体系中普遍存在概念不清和多采用主观构建评价指标的问题.为此,开展了基于BP神经网络的高校教师精准教学能力评价模型研究.首先,以理论研究为基础,对精准教学能力进行等级划分并构建评价指标框架,运用层级分析法建立指标权重;其次,利用BP神经网络智能学习的特性,以不同数据类型的指标值为输入,对应能力综合值为输出,检验精准教学能力分级及指标权重的合理性,进而生成较为客观的评价模型;最后,利用开发的评价系统和调查问卷进行样本数据采集和模型检验,从神经网络对数据的分类、拟合及仿真结果来看,模型能够对高校教师的精准教学能力进行客观评价,教师对模型测量结果的准确性也具有较高认可度. 展开更多
关键词 教育数字化转型 高校教师 精准教学能力 评价模型 bp神经网络
下载PDF
基于改进BP神经网络的河北省碳排放预测
16
作者 王永利 李颐雯 +4 位作者 王欢 董鹏旭 滕越 蔺媛 刘琳 《生态经济》 北大核心 2024年第6期30-37,共8页
“双碳”目标背景下,针对河北省高碳经济发展模式难以改变、以往预测模型难以满足现实需求等问题。论文根据统计年鉴数据,研究河北省能源消费趋势和分行业碳排放特征,并借助脱钩指数探究河北省碳排放动态变化趋势,选取IPCC二氧化碳排放... “双碳”目标背景下,针对河北省高碳经济发展模式难以改变、以往预测模型难以满足现实需求等问题。论文根据统计年鉴数据,研究河北省能源消费趋势和分行业碳排放特征,并借助脱钩指数探究河北省碳排放动态变化趋势,选取IPCC二氧化碳排放的计算方法,基于6项碳排放量影响因素建立遗传算法(GA)优化BP神经网络的河北省碳排放模型,对河北省2021—2030年碳排放量进行仿真预测。结果显示:河北省能源效率低于全国水平,河北省工业碳排放量最高;河北省的经济增长与碳排放之间主要呈弱脱钩态势;GA-BP模型预测结果比BP模型更加稳定,误差较小,更适合用于碳排放量的预测。预测结果显示,河北省未来碳排放量呈缓慢增长趋势,以期为政府决策提供理论依据,助力河北省“双碳”目标的实现。 展开更多
关键词 碳排放预测 bp神经网络 脱钩分析 河北省
下载PDF
大红袍花椒对流-辐射并联干燥BP神经网络模拟与品质研究
17
作者 薛韩玲 王楠 +3 位作者 牛婷婷 陆泽华 廖帮海 习红军 《食品与发酵工业》 CAS CSCD 北大核心 2024年第19期265-273,共9页
为探究热风干燥、热风-红外和热风-微波对流-辐射并联干燥对大红袍花椒干燥特性及品质的影响,实验分析了不同温度、装载量、干燥功率等条件下的大红袍花椒干燥曲线特征,运用BP神经网络进行拟合,并采用感官评价与GC-MS对3种干燥方式干制... 为探究热风干燥、热风-红外和热风-微波对流-辐射并联干燥对大红袍花椒干燥特性及品质的影响,实验分析了不同温度、装载量、干燥功率等条件下的大红袍花椒干燥曲线特征,运用BP神经网络进行拟合,并采用感官评价与GC-MS对3种干燥方式干制大红袍花椒挥发油进行分析。结果表明,热风-红外并联干燥的恒速期干燥速率高于热风干燥一个数量级,热风-微波并联干燥时长最短,出现二次升速且降速期不明显;升温、减少装载量或加大微波功率均有利于提高干燥速率和缩短干燥时间。BP神经网络的相关系数R值均能达到0.985以上,均方误差最低可达1.010×10^(-4),平均相对误差值E为4.55%,可很好地描述大红袍花椒的干燥动力学特性,预测大红袍花椒干燥过程含水率准确且迅速。3种干燥方式挥发油分别鉴定出40、39、28种化学成分,热风-微波并联干燥获取大红袍花椒挥发油中烯烃类化合物相对含量最大,但色泽和口感差,热风干燥花椒色泽最佳,挥发油中化合物种类最多,热风-红外并联干燥既缩短了大红袍花椒干燥时间,又能保持其良好品质,为较佳选择。 展开更多
关键词 并联 干燥 大红袍花椒 bp神经网络 品质
下载PDF
基于BP神经网络的重力仪高机动状态快速调平修正技术
18
作者 杨晔 董光泰 +1 位作者 高巍 张子山 《中国惯性技术学报》 EI CSCD 北大核心 2024年第5期457-462,共6页
针对平台式重力仪大机动状态后测量能力恢复慢的问题,提出一种基于BP神经网络的重力仪稳定平台快速调平修正技术。首先,针对动态重力测量在测量平台大机动状态后调平能力不足的问题,研究了基于BP神经网络的平台姿态高效、准确解算方法;... 针对平台式重力仪大机动状态后测量能力恢复慢的问题,提出一种基于BP神经网络的重力仪稳定平台快速调平修正技术。首先,针对动态重力测量在测量平台大机动状态后调平能力不足的问题,研究了基于BP神经网络的平台姿态高效、准确解算方法;其次,利用惯性元件和卫星导航系统(GNSS)的信息优化BP神经网络,形成不同条件的平台姿态提取优化模型;最后,利用模拟仿真实验和实际机载动态重力测量数据验证所提方法的有效性和准确性。实验结果表明在大机动的动态条件下采用所提方法可以扶正重力仪稳定平台,将机动后重力仪稳定平台稳定时间缩短83.3%以上,提升动态重力测量效率。 展开更多
关键词 动态重力测量 平台式重力仪 bp神经网络 平台快速修正
下载PDF
基于AE-BP模型的杨木胶合板应力损伤识别
19
作者 刘佳 于孟言 +3 位作者 高珊 陈昱龙 冯蔓萱 杜鑫宇 《中南林业科技大学学报》 CAS CSCD 北大核心 2024年第4期169-179,共11页
【目的】利用声发射(AE)技术对应力损伤全过程中的杨木胶合板进行无损检测,并利用BP神经网络对AE检测结果进行识别,以提高胶合板损伤检测精度。【方法】以市场占有量较高的托盘用杨木胶合板作为研究对象,在联合AE和应力损伤试验过程中,... 【目的】利用声发射(AE)技术对应力损伤全过程中的杨木胶合板进行无损检测,并利用BP神经网络对AE检测结果进行识别,以提高胶合板损伤检测精度。【方法】以市场占有量较高的托盘用杨木胶合板作为研究对象,在联合AE和应力损伤试验过程中,提取6个AE特征参数,利用声发射RA-AF联合分析法区分杨木胶合板产生裂纹的类型,采用K-均值聚类分析方法确定损伤演化程度和AE特征参数之间的对应关系,利用BP神经网络建立损伤识别模型,并对识别网络进行测试训练。【结果】AE信号幅度和上升时间可有效地表征杨木胶合板应力损伤从微裂纹萌生、产生宏观裂纹至完全断裂的损伤演化过程;通过RA-AF联合分析发现:杨木胶合板在应力损伤试验第一阶段主要为剪切破坏损伤,第二、三阶段主要为拉伸破坏损伤;通过K-均值聚类分析发现损伤类型与AE峰值频率之间的存在较强对应关系,可有效的表征不同的损伤类型:在31 kHz内为基体开裂,在31~100 kHz内为脱胶分层,大于100 kHz为纤维断裂;构建AE-BP神经网络模型对应力损伤类型训练样本的拟合优度是95.94%,测试集的拟合优度是98.89%,模型总拟合优度是96.51%,网络训练效果较好。【结论】在应力承载AE监测过程中,通过构建AE-BP模型,可对杨木胶合板产生的未知损伤进行有效检测并准确识别。 展开更多
关键词 杨木胶合板 声发射 bp神经网络 损伤识别
下载PDF
基于遗传算法优化BP神经网络的GNSS干扰源定位技术 被引量:1
20
作者 苏佳 杨泽超 +2 位作者 易卿武 杨建雷 李硕 《无线电工程》 2024年第5期1175-1182,共8页
全球导航卫星系统(GNSS)应用已全面深入到国家安全和国民经济当中,但由于GNSS信号到达地面后信号强度很弱,极易受到无意或有意的人为干扰。当出现压制干扰时会影响接收机正常工作,从而导致某一区域导航定位效果受到影响,因此对干扰源的... 全球导航卫星系统(GNSS)应用已全面深入到国家安全和国民经济当中,但由于GNSS信号到达地面后信号强度很弱,极易受到无意或有意的人为干扰。当出现压制干扰时会影响接收机正常工作,从而导致某一区域导航定位效果受到影响,因此对干扰源的排查和消除十分重要。针对上述压制干扰,通过在监测区域分布一定数量低成本接收机,利用其接收的载噪比数据特征实现干扰源的位置估计。考虑到信号传播过程中的衰减模型是非线性的,提出了基于遗传算法(Genetic Algorithm,GA)优化反向传播(Back Propagation,BP)神经网络的干扰源定位方法,通过神经网络学习得到监测区域载噪比特征的复杂非线性关系,GA对神经网络的初始权值和阈值进行优化,最终在监测区域通过梯度下降法搜索出干扰源位置。结果表明,GA优化后的网络预测误差更小,能够初步定位干扰源位置且平均定位误差率(Average Localization Error Rate,ALER)约为0.23%,验证了模型的合理性和有效性。 展开更多
关键词 载噪比 压制干扰 全球导航卫星系统干扰源定位 反向传播神经网络
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部