When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global s...When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global solar radiation(GSR)in the south of Algeria:Adrar,Ouargla,and Bechar.The proposed hybrid GA-ANN model,based on genetic algorithm-based optimization,was developed to improve the ANN model.The GA-ANN and ANFIS models performed better than the standalone ANN-based model,with GA-ANN being better suited for forecasting in all sites,and it performed the best with the best values in the testing phase of Coefficient of Determination(R=0.9005),Mean Absolute Percentage Error(MAPE=8.40%),and Relative Root Mean Square Error(rRMSE=12.56%).Nevertheless,the ANFIS model outperformed the GA-ANN model in forecasting daily GSR,with the best values of indicators when testing the model being R=0.9374,MAPE=7.78%,and rRMSE=10.54%.Generally,we may conclude that the initial ANN stand-alone model performance when forecasting solar radiation has been improved,and the results obtained after injecting the genetic algorithm into the ANN to optimize its weights were satisfactory.The model can be used to forecast daily GSR in dry climates and other climates and may also be helpful in selecting solar energy system installations and sizes.展开更多
Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detec...Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detection have relied heavily on feature engineering and have often fallen short in adapting to the dynamically changing patterns of phishingUniformResource Locator(URLs).Addressing these challenge,we introduce a framework that integrates the sequential data processing strengths of a Recurrent Neural Network(RNN)with the hyperparameter optimization prowess of theWhale Optimization Algorithm(WOA).Ourmodel capitalizes on an extensive Kaggle dataset,featuring over 11,000 URLs,each delineated by 30 attributes.The WOA’s hyperparameter optimization enhances the RNN’s performance,evidenced by a meticulous validation process.The results,encapsulated in precision,recall,and F1-score metrics,surpass baseline models,achieving an overall accuracy of 92%.This study not only demonstrates the RNN’s proficiency in learning complex patterns but also underscores the WOA’s effectiveness in refining machine learning models for the critical task of phishing detection.展开更多
In the process of Wavelet Analysis,only the low-frequency signals are re-decomposed,and the high-frequency signals are no longer decomposed,resulting in a decrease in frequency resolution with increasing frequency.The...In the process of Wavelet Analysis,only the low-frequency signals are re-decomposed,and the high-frequency signals are no longer decomposed,resulting in a decrease in frequency resolution with increasing frequency.Therefore,in this paper,firstly,Wavelet Packet Decomposition is used for feature extraction of vibration signals,which makes up for the shortcomings of Wavelet Analysis in extracting fault features of nonlinear vibration signals,and different energy values in different frequency bands are obtained by Wavelet Packet Decomposition.The features are visualized by the K-Means clustering method,and the results show that the extracted energy features can accurately distinguish the different states of the bearing.Then a fault diagnosis model based on BP Neural Network optimized by Beetle Algo-rithm is proposed to identify the bearing faults.Compared with the Particle Swarm Algorithm,Beetle Algorithm can quickly find the error extreme value,which greatly reduces the training time of the model.At last,two experiments are conducted,which show that the accuracy of the model can reach more than 95%,and the model has a certain anti-interference ability.展开更多
Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ri...Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ring's position is asymmetrical.All of these cause that the ring's dimensions cannot be measured directly.Through analyzing the relationships among the dimensions of ring blanks,the positions of rolls and the ring's inner and outer diameter,the soft measurement model of ring's dimensions is established based on the radial basis function neural network(RBFNN).A mass of data samples are obtained from VHRR finite element(FE) simulations to train and test the soft measurement NN model,and the model's structure parameters are deduced and optimized by genetic algorithm(GA).Finally,the soft measurement system of ring's dimensions is established and validated by the VHRR experiments.The ring's dimensions were measured artificially and calculated by the soft measurement NN model.The results show that the calculation values of GA-RBFNN model are close to the artificial measurement data.In addition,the calculation accuracy of GA-RBFNN model is higher than that of RBFNN model.The research results suggest that the soft measurement NN model has high precision and flexibility.The research can provide practical methods and theoretical guidance for the accurate measurement of VHRR process.展开更多
The heating technological requirement of the conventional PID control is difficult to guarantee which based on the precise mathematical model,because the heating furnace for heating treatment with the big inertia,the ...The heating technological requirement of the conventional PID control is difficult to guarantee which based on the precise mathematical model,because the heating furnace for heating treatment with the big inertia,the pure time delay and nonlinear time-varying.Proposed one kind optimized variable method of PID controller based on the genetic algorithm with improved BP network that better realized the completely automatic intelligent control of the entire thermal process than the classics critical purporting(Z-N)method.A heating furnace for the object was simulated with MATLAB,simulation results show that the control system has the quicker response characteristic,the better dynamic characteristic and the quite stronger robustness,which has some promotional value for the control of industrial furnace.展开更多
Aiming at the diversity and nonlinearity of the elevator system control target, an effective group method based on a hybrid algorithm of genetic algorithm and neural network is presented in this paper. The genetic alg...Aiming at the diversity and nonlinearity of the elevator system control target, an effective group method based on a hybrid algorithm of genetic algorithm and neural network is presented in this paper. The genetic algorithm is used to search the weight of the neural network. At the same time, the multi-objective-based evaluation function is adopted, in which there are three main indicators including the passenger waiting time, car passengers number and the number of stops. Different weights are given to meet the actual needs. The optimal values of the evaluation function are obtained, and the optimal dispatch control of the elevator group control system based on neural network is realized. By analyzing the running of the elevator group control system, all the processes and steps are presented. The validity of the hybrid algorithm is verified by the dynamic imitation performance.展开更多
In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural ne...In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural networks have been shown to solve image processing problems effectively.However,when designing the network structure for a particular problem,you need to adjust the hyperparameters for higher accuracy.This technique is time consuming and requires a lot of work and domain knowledge.Designing a convolutional neural network architecture is a classic NP-hard optimization challenge.On the other hand,different datasets require different combinations of models or hyperparameters,which can be time consuming and inconvenient.Various approaches have been proposed to overcome this problem,such as grid search limited to low-dimensional space and queuing by random selection.To address this issue,we propose an evolutionary algorithm-based approach that dynamically enhances the structure of Convolution Neural Networks(CNNs)using optimized hyperparameters.This study proposes a method using Non-dominated sorted genetic algorithms(NSGA)to improve the hyperparameters of the CNN model.In addition,different types and parameter ranges of existing genetic algorithms are used.Acomparative study was conducted with various state-of-the-art methodologies and algorithms.Experiments have shown that our proposed approach is superior to previous methods in terms of classification accuracy,and the results are published in modern computing literature.展开更多
Radial Basis Function Neural Network(RBFNN)ensembles have long suffered from non-efficient training,where incorrect parameter settings can be computationally disastrous.This paper examines different evolutionary algor...Radial Basis Function Neural Network(RBFNN)ensembles have long suffered from non-efficient training,where incorrect parameter settings can be computationally disastrous.This paper examines different evolutionary algorithms for training the Symbolic Radial Basis Function Neural Network(SRBFNN)through the behavior’s integration of satisfiability programming.Inspired by evolutionary algorithms,which can iteratively find the nearoptimal solution,different Evolutionary Algorithms(EAs)were designed to optimize the producer output weight of the SRBFNN that corresponds to the embedded logic programming 2Satisfiability representation(SRBFNN-2SAT).The SRBFNN’s objective function that corresponds to Satisfiability logic programming can be minimized by different algorithms,including Genetic Algorithm(GA),Evolution Strategy Algorithm(ES),Differential Evolution Algorithm(DE),and Evolutionary Programming Algorithm(EP).Each of these methods is presented in the steps in the flowchart form which can be used for its straightforward implementation in any programming language.With the use of SRBFNN-2SAT,a training method based on these algorithms has been presented,then training has been compared among algorithms,which were applied in Microsoft Visual C++software using multiple metrics of performance,including Mean Absolute Relative Error(MARE),Root Mean Square Error(RMSE),Mean Absolute Percentage Error(MAPE),Mean Bias Error(MBE),Systematic Error(SD),Schwarz Bayesian Criterion(SBC),and Central Process Unit time(CPU time).Based on the results,the EP algorithm achieved a higher training rate and simple structure compared with the rest of the algorithms.It has been confirmed that the EP algorithm is quite effective in training and obtaining the best output weight,accompanied by the slightest iteration error,which minimizes the objective function of SRBFNN-2SAT.展开更多
For optimal design of mechanical clinching steel-aluminum joints, the back propagation (BP) neural network is used to research the mapping relationship between joining technique parameters including sheet thickness,...For optimal design of mechanical clinching steel-aluminum joints, the back propagation (BP) neural network is used to research the mapping relationship between joining technique parameters including sheet thickness, sheet hardness, joint bottom diameter etc., and mechanical properties of shearing and peeling in order to investigate joining technology between various material plates in the steel-aluminum hybrid structure car body. Genetic algorithm (GA) is adopted to optimize the back-propagation neural network connection weights. The training and validating samples are made by the BTM Tog-L-Loc system with different technologic parameters. The training samples' parameters and the corresponding joints' mechanical properties are supplied to the artificial neural network (ANN) for training. The validating samples' experimental data is used for checking up the prediction outputs. The calculation results show that GA can improve the model's prediction precision and generalization ability of BP neural network. The comparative analysis between the experimental data and the prediction outputs shows that ANN prediction models after training can effectively predict the mechanical properties of mechanical clinching joints and prove the feasibility and reliability of the intelligent neural networks system when used in the mechanical properties prediction of mechanical clinching joints. The prediction results can be used for a reference in the design of mechanical clinching steel-aluminum joints.展开更多
Neural-Network Response Surfaces (NNRS) is applied to replace the actual expensive finite element analysis during the composite structural optimization process. The Orthotropic Experiment Method (OEM) is used to s...Neural-Network Response Surfaces (NNRS) is applied to replace the actual expensive finite element analysis during the composite structural optimization process. The Orthotropic Experiment Method (OEM) is used to select the most appropriate design samples for network training. The trained response surfaces can either be objective function or constraint conditions. Together with other conven- tional constraints, an optimization model is then set up and can be solved by Genetic Algorithm (GA). This allows the separation between design analysis modeling and optimization searching. Through an example of a hat-stiffened composite plate design, the weight response surface is constructed to be objective function, and strength and buckling response surfaces as constraints; and all of them are trained through NASTRAN finite element analysis. The results of optimization study illustrate that the cycles of structural analysis ean be remarkably reduced or even eliminated during the optimization, thus greatly raising the efficiency of optimization process. It also observed that NNRS approximation can achieve equal or even better accuracy than conventional functional response surfaces.展开更多
In order to improve turbine internal efficiency and lower manufacturing cost, a new highly loaded rotating blade has been developed. The 3D optimization design method based on artificial neural network and genetic alg...In order to improve turbine internal efficiency and lower manufacturing cost, a new highly loaded rotating blade has been developed. The 3D optimization design method based on artificial neural network and genetic algorithm is adopted to construct the blade shape. The blade is stacked by the center of gravity in radial direction with five sections. For each blade section, independent suction and pressure sides are constructed from the camber line using Bezier curves. Three-dimensional flow analysis is carried out to verify the performance of the new blade. It is found that the new blade has improved the blade performance by 0.5%. Consequently, it is verified that the new blade is effective to improve the turbine internal efficiency and to lower the turbine weight and manufacturing cost by reducing the blade number by about 15%.展开更多
The trial-and-error method is widely used for the current optimization of the steel casting feeding system, which is highly random, subjective and thus ineff icient. In the present work, both the theoretical and the e...The trial-and-error method is widely used for the current optimization of the steel casting feeding system, which is highly random, subjective and thus ineff icient. In the present work, both the theoretical and the experimental research on the modeling and optimization methods of the process are studied. An approximate alternative model is established based on the Back Propagation(BP) neural network and experimental design. The process parameters of the feeding system are taken as the input, the volumes of shrinkage cavities and porosities calculated by simulation are simultaneously taken as the output. Thus, a mathematical model is established by the BP neural network to combine the input variables with the output response. Then, this model is optimized by the nonlinear optimization function of the genetic algorithm. Finally, a feeding system optimization of a steel traveling wheel is conducted. No shrinkage cavities and porosities are induced through the optimization. Compared to the initial design scheme, the process yield is increased by 4.1% and the volume of the riser is decreased by 5.48×10~6 mm3.展开更多
Two artificial intelligence techniques, artificial neural network and genetic algorithm, were applied to optimize the fermentation medium for improving the nitrite oxidization rate of nitrite oxidizing bacteria. Exper...Two artificial intelligence techniques, artificial neural network and genetic algorithm, were applied to optimize the fermentation medium for improving the nitrite oxidization rate of nitrite oxidizing bacteria. Experiments were conducted with the composition of medium components obtained by genetic algorithm, and the experimental data were used to build a BP (back propagation) neural network model. The concentrations of six medium components were used as input vectors, and the nitrite oxidization rate was used as output vector of the model. The BP neural network model was used as the objective function of genetic algorithm to find the optimum medium composition for the maximum nitrite oxidization rate. The maximum nitrite oxidization rate was 0.952 g 2 NO-2-N·(g MLSS)-1·d-1 , obtained at the genetic algorithm optimized concentration of medium components (g·L-1 ): NaCl 0.58, MgSO 4 ·7H 2 O 0.14, FeSO 4 ·7H 2 O 0.141, KH 2 PO 4 0.8485, NaNO 2 2.52, and NaHCO 3 3.613. Validation experiments suggest that the experimental results are consistent with the best result predicted by the model. A scale-up experiment shows that the nitrite degraded completely after 34 h when cultured in the optimum medium, which is 10 h less than that cultured in the initial medium.展开更多
Thermal deformation error is one of the most important factors affecting the CNCs’ accuracy, so research is conducted on the temperature errors affecting CNCs’ machining accuracy;on the basis of analyzing the unpred...Thermal deformation error is one of the most important factors affecting the CNCs’ accuracy, so research is conducted on the temperature errors affecting CNCs’ machining accuracy;on the basis of analyzing the unpredictability and pre-maturing of the results of the genetic algorithm, as well as the slow speed of the training speed of the particle algorithm, a kind of Mind Evolutionary Algorithm optimized BP neural network featuring extremely strong global search capacity was proposed;type KVC850MA/2 five-axis CNC of Changzheng Lathe Factory was used as the research subject, and the Mind Evolutionary Algorithm optimized BP neural network algorithm was used for the establishment of the compensation model between temperature changes and the CNCs’ thermal deformation errors, as well as the realization method on hardware. The simulation results indicated that this method featured extremely high practical value.展开更多
[ Objective] The paper aimed to optimize cottonseed meal de-gossypol process by extrusion. [ Method ] The artificial neural network (ANN) was used to stimulate the degradation of free gossypol in cottonseed meal by ...[ Objective] The paper aimed to optimize cottonseed meal de-gossypol process by extrusion. [ Method ] The artificial neural network (ANN) was used to stimulate the degradation of free gossypol in cottonseed meal by extrusion process, and a three-layer back propagation neural network was established to predict the degradation of free gossypol. [ Result] The result of 10-fold cross validation showed that the ANN with the training function as traingdx at hidden layer with eight neurons gave the smallest mean square error (MSE). ANN predicted results were very close to the experimental results with correlation coefficient (R2 ) of 0.994 1 and RMSE of 0.497 1. A genetic algorithm (GA) based on the established neural network model was also used for optimizing de-gossypol process. The re- sults of GA showed that the optimal conditions of de-gossypol were puffing temperature 131℃, water ratio 51% , rotational speed 158 r/rain, and feeding speed 136 kg/h, while under this condition the degradation rate of free gossypol was 90.50%, which was close to the predicted result of CA with the small average relative er- ror of 1.38%. [ Conclusion] These results suggested that the GA based on a neural network model might be an excellent tool for optimizing cottonseed meal de-gos- sypol process.展开更多
We developed and tested an improved neural network to predict the average concentration of PM10(particulate matter with diameter smaller than 10 ?m) several hours in advance in summer in Beijing.A genetic algorithm op...We developed and tested an improved neural network to predict the average concentration of PM10(particulate matter with diameter smaller than 10 ?m) several hours in advance in summer in Beijing.A genetic algorithm optimization procedure for optimizing initial weights and thresholds of the neural network was also evaluated.This research was based upon the PM10 data from seven monitoring sites in Beijing urban region and meteorological observation data,which were recorded every 3 h during summer of 2002.Two neural network models were developed.Model I was built for predicting PM10 concentrations 3 h in advance while Model II for one day in advance.The predictions of both models were found to be consistent with observations.Percent errors in forecasting the numerical value were about 20.This brings us to the conclusion that short-term fluctuations of PM10 concentrations in Beijing urban region in summer are to a large extent driven by meteorological conditions.Moreover,the predicted results of Model II were compared with the ones provided by the Models-3 Community Multiscale Air Quality(CMAQ) modeling system.The mean relative errors of both models were 0.21 and 0.26,respectively.The performance of the neural network model was similar to numerical models,when applied to short-time prediction of PM10 concentration.展开更多
The present study is to improve the volume flow rate of an axial fan through optimizing the blade shape under the demand for a specified static pressure. Fourteen design variables were selected to control the blade ca...The present study is to improve the volume flow rate of an axial fan through optimizing the blade shape under the demand for a specified static pressure. Fourteen design variables were selected to control the blade camber lines and the stacking line and the values of these variables were determined by using the experimental design method of the Latin Hypercube Sampling (LHS) to generate forty designs. The optimization was carried out using the genetic algorithm (GA) coupled with the artificial neural network (ANN) to increase the volume flow rate of the axial fan under the constraint of a specific motor power and a required static pressure. Differences in the aerodynamic performance and the flow characteristics between the original model and the optimal model were analyzed in detail. The results showed that the volume flow rate of the optimal model increased by 33%. The chord length, the installation angle and the cascade turning angle changed considerably. The forward leaned blade was beneficial to improve the volume flow rate of the axial fan. The axial velocity distribution and the static pressure distribution on the blade surface were improved after optimization.展开更多
The study on scientific analysis and prediction of China’s future carbon emissions is conducive to balancing the relationship between economic development and carbon emissions in the new era,and actively responding t...The study on scientific analysis and prediction of China’s future carbon emissions is conducive to balancing the relationship between economic development and carbon emissions in the new era,and actively responding to climate change policy.Through the analysis of the application of the generalized regression neural network(GRNN)in prediction,this paper improved the prediction method of GRNN.Genetic algorithm(GA)was adopted to search the optimal smooth factor as the only factor of GRNN,which was then used for prediction in GRNN.During the prediction of carbon dioxide emissions using the improved method,the increments of data were taken into account.The target values were obtained after the calculation of the predicted results.Finally,compared with the results of GRNN,the improved method realized higher prediction accuracy.It thus offers a new way of predicting total carbon dioxide emissions,and the prediction results can provide macroscopic guidance and decision-making reference for China’s environmental protection and trading of carbon emissions.展开更多
It is very important to estimate the basic parameters in helicopter preliminary design. Neural Network (NN) has the advantages in estimating accuracy and generalization over traditional methods. However, there are s...It is very important to estimate the basic parameters in helicopter preliminary design. Neural Network (NN) has the advantages in estimating accuracy and generalization over traditional methods. However, there are some difficulties in using NN, e.g., how to select a proper network structure and the number of hidden layers. In this paper, structure and connection weight of a three-layer NN are optimized by genetic algorithm, and the optimized network is applied to helicopter sizing. The proposed method can not only give an optimal NN structure and connection weight, but also reduce the prediction error and has the capability of self-learning when the latest data are available. Furthermore, this method can be easily applied to helicopter design systems.展开更多
This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in boa...This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum.展开更多
文摘When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global solar radiation(GSR)in the south of Algeria:Adrar,Ouargla,and Bechar.The proposed hybrid GA-ANN model,based on genetic algorithm-based optimization,was developed to improve the ANN model.The GA-ANN and ANFIS models performed better than the standalone ANN-based model,with GA-ANN being better suited for forecasting in all sites,and it performed the best with the best values in the testing phase of Coefficient of Determination(R=0.9005),Mean Absolute Percentage Error(MAPE=8.40%),and Relative Root Mean Square Error(rRMSE=12.56%).Nevertheless,the ANFIS model outperformed the GA-ANN model in forecasting daily GSR,with the best values of indicators when testing the model being R=0.9374,MAPE=7.78%,and rRMSE=10.54%.Generally,we may conclude that the initial ANN stand-alone model performance when forecasting solar radiation has been improved,and the results obtained after injecting the genetic algorithm into the ANN to optimize its weights were satisfactory.The model can be used to forecast daily GSR in dry climates and other climates and may also be helpful in selecting solar energy system installations and sizes.
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2024R 343)PrincessNourah bint Abdulrahman University,Riyadh,Saudi ArabiaDeanship of Scientific Research at Northern Border University,Arar,Kingdom of Saudi Arabia,for funding this researchwork through the project number“NBU-FFR-2024-1092-02”.
文摘Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detection have relied heavily on feature engineering and have often fallen short in adapting to the dynamically changing patterns of phishingUniformResource Locator(URLs).Addressing these challenge,we introduce a framework that integrates the sequential data processing strengths of a Recurrent Neural Network(RNN)with the hyperparameter optimization prowess of theWhale Optimization Algorithm(WOA).Ourmodel capitalizes on an extensive Kaggle dataset,featuring over 11,000 URLs,each delineated by 30 attributes.The WOA’s hyperparameter optimization enhances the RNN’s performance,evidenced by a meticulous validation process.The results,encapsulated in precision,recall,and F1-score metrics,surpass baseline models,achieving an overall accuracy of 92%.This study not only demonstrates the RNN’s proficiency in learning complex patterns but also underscores the WOA’s effectiveness in refining machine learning models for the critical task of phishing detection.
基金Supported by Agricultural Science and Technology Independent Innovation Fund of Jiangsu Province of China(Grant No.CX(19)3081)Key Research and Development Program of Jiangsu Province of China(Grant No.BE2018127).
文摘In the process of Wavelet Analysis,only the low-frequency signals are re-decomposed,and the high-frequency signals are no longer decomposed,resulting in a decrease in frequency resolution with increasing frequency.Therefore,in this paper,firstly,Wavelet Packet Decomposition is used for feature extraction of vibration signals,which makes up for the shortcomings of Wavelet Analysis in extracting fault features of nonlinear vibration signals,and different energy values in different frequency bands are obtained by Wavelet Packet Decomposition.The features are visualized by the K-Means clustering method,and the results show that the extracted energy features can accurately distinguish the different states of the bearing.Then a fault diagnosis model based on BP Neural Network optimized by Beetle Algo-rithm is proposed to identify the bearing faults.Compared with the Particle Swarm Algorithm,Beetle Algorithm can quickly find the error extreme value,which greatly reduces the training time of the model.At last,two experiments are conducted,which show that the accuracy of the model can reach more than 95%,and the model has a certain anti-interference ability.
基金Project(51205299)supported by the National Natural Science Foundation of ChinaProject(2015M582643)supported by the China Postdoctoral Science Foundation+2 种基金Project(2014BAA008)supported by the Science and Technology Support Program of Hubei Province,ChinaProject(2014-IV-144)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(2012AAA07-01)supported by the Major Science and Technology Achievements Transformation&Industrialization Program of Hubei Province,China
文摘Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ring's position is asymmetrical.All of these cause that the ring's dimensions cannot be measured directly.Through analyzing the relationships among the dimensions of ring blanks,the positions of rolls and the ring's inner and outer diameter,the soft measurement model of ring's dimensions is established based on the radial basis function neural network(RBFNN).A mass of data samples are obtained from VHRR finite element(FE) simulations to train and test the soft measurement NN model,and the model's structure parameters are deduced and optimized by genetic algorithm(GA).Finally,the soft measurement system of ring's dimensions is established and validated by the VHRR experiments.The ring's dimensions were measured artificially and calculated by the soft measurement NN model.The results show that the calculation values of GA-RBFNN model are close to the artificial measurement data.In addition,the calculation accuracy of GA-RBFNN model is higher than that of RBFNN model.The research results suggest that the soft measurement NN model has high precision and flexibility.The research can provide practical methods and theoretical guidance for the accurate measurement of VHRR process.
基金This work was supported by the youth backbone teachers training program of Henan colleges and universities under Grant No.2016ggjs-287the project of science and technology of Henan province under Grant No.172102210124the Key Scientific Research projects in Colleges and Universities in Henan(Grant No.18B460003).
文摘The heating technological requirement of the conventional PID control is difficult to guarantee which based on the precise mathematical model,because the heating furnace for heating treatment with the big inertia,the pure time delay and nonlinear time-varying.Proposed one kind optimized variable method of PID controller based on the genetic algorithm with improved BP network that better realized the completely automatic intelligent control of the entire thermal process than the classics critical purporting(Z-N)method.A heating furnace for the object was simulated with MATLAB,simulation results show that the control system has the quicker response characteristic,the better dynamic characteristic and the quite stronger robustness,which has some promotional value for the control of industrial furnace.
基金Supported by National Natural Science Foundation of China (No60874077) Specialized Research Funds for Doctoral Program of Higher Education of China (No20060056054) Research Funds for Scientific Financing Projects of Quality Control Public Welfare Profession (No2007GYB172)
文摘Aiming at the diversity and nonlinearity of the elevator system control target, an effective group method based on a hybrid algorithm of genetic algorithm and neural network is presented in this paper. The genetic algorithm is used to search the weight of the neural network. At the same time, the multi-objective-based evaluation function is adopted, in which there are three main indicators including the passenger waiting time, car passengers number and the number of stops. Different weights are given to meet the actual needs. The optimal values of the evaluation function are obtained, and the optimal dispatch control of the elevator group control system based on neural network is realized. By analyzing the running of the elevator group control system, all the processes and steps are presented. The validity of the hybrid algorithm is verified by the dynamic imitation performance.
基金This research was supported by the Researchers Supporting Program(TUMAProject-2021-27)Almaarefa University,Riyadh,Saudi Arabia.
文摘In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural networks have been shown to solve image processing problems effectively.However,when designing the network structure for a particular problem,you need to adjust the hyperparameters for higher accuracy.This technique is time consuming and requires a lot of work and domain knowledge.Designing a convolutional neural network architecture is a classic NP-hard optimization challenge.On the other hand,different datasets require different combinations of models or hyperparameters,which can be time consuming and inconvenient.Various approaches have been proposed to overcome this problem,such as grid search limited to low-dimensional space and queuing by random selection.To address this issue,we propose an evolutionary algorithm-based approach that dynamically enhances the structure of Convolution Neural Networks(CNNs)using optimized hyperparameters.This study proposes a method using Non-dominated sorted genetic algorithms(NSGA)to improve the hyperparameters of the CNN model.In addition,different types and parameter ranges of existing genetic algorithms are used.Acomparative study was conducted with various state-of-the-art methodologies and algorithms.Experiments have shown that our proposed approach is superior to previous methods in terms of classification accuracy,and the results are published in modern computing literature.
基金This work is supported by Ministry of Higher Education(MOHE)through Fundamental Research Grant Scheme(FRGS)(FRGS/1/2020/STG06/UTHM/03/7).
文摘Radial Basis Function Neural Network(RBFNN)ensembles have long suffered from non-efficient training,where incorrect parameter settings can be computationally disastrous.This paper examines different evolutionary algorithms for training the Symbolic Radial Basis Function Neural Network(SRBFNN)through the behavior’s integration of satisfiability programming.Inspired by evolutionary algorithms,which can iteratively find the nearoptimal solution,different Evolutionary Algorithms(EAs)were designed to optimize the producer output weight of the SRBFNN that corresponds to the embedded logic programming 2Satisfiability representation(SRBFNN-2SAT).The SRBFNN’s objective function that corresponds to Satisfiability logic programming can be minimized by different algorithms,including Genetic Algorithm(GA),Evolution Strategy Algorithm(ES),Differential Evolution Algorithm(DE),and Evolutionary Programming Algorithm(EP).Each of these methods is presented in the steps in the flowchart form which can be used for its straightforward implementation in any programming language.With the use of SRBFNN-2SAT,a training method based on these algorithms has been presented,then training has been compared among algorithms,which were applied in Microsoft Visual C++software using multiple metrics of performance,including Mean Absolute Relative Error(MARE),Root Mean Square Error(RMSE),Mean Absolute Percentage Error(MAPE),Mean Bias Error(MBE),Systematic Error(SD),Schwarz Bayesian Criterion(SBC),and Central Process Unit time(CPU time).Based on the results,the EP algorithm achieved a higher training rate and simple structure compared with the rest of the algorithms.It has been confirmed that the EP algorithm is quite effective in training and obtaining the best output weight,accompanied by the slightest iteration error,which minimizes the objective function of SRBFNN-2SAT.
基金supported by Guangdong Provincial Technology Planning of China (Grant No. 2007B010400052)State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body of China (Grant No. 30715006)Guangdong Provincial Key Laboratory of Automotive Engineering, China (Grant No. 2007A03012)
文摘For optimal design of mechanical clinching steel-aluminum joints, the back propagation (BP) neural network is used to research the mapping relationship between joining technique parameters including sheet thickness, sheet hardness, joint bottom diameter etc., and mechanical properties of shearing and peeling in order to investigate joining technology between various material plates in the steel-aluminum hybrid structure car body. Genetic algorithm (GA) is adopted to optimize the back-propagation neural network connection weights. The training and validating samples are made by the BTM Tog-L-Loc system with different technologic parameters. The training samples' parameters and the corresponding joints' mechanical properties are supplied to the artificial neural network (ANN) for training. The validating samples' experimental data is used for checking up the prediction outputs. The calculation results show that GA can improve the model's prediction precision and generalization ability of BP neural network. The comparative analysis between the experimental data and the prediction outputs shows that ANN prediction models after training can effectively predict the mechanical properties of mechanical clinching joints and prove the feasibility and reliability of the intelligent neural networks system when used in the mechanical properties prediction of mechanical clinching joints. The prediction results can be used for a reference in the design of mechanical clinching steel-aluminum joints.
文摘Neural-Network Response Surfaces (NNRS) is applied to replace the actual expensive finite element analysis during the composite structural optimization process. The Orthotropic Experiment Method (OEM) is used to select the most appropriate design samples for network training. The trained response surfaces can either be objective function or constraint conditions. Together with other conven- tional constraints, an optimization model is then set up and can be solved by Genetic Algorithm (GA). This allows the separation between design analysis modeling and optimization searching. Through an example of a hat-stiffened composite plate design, the weight response surface is constructed to be objective function, and strength and buckling response surfaces as constraints; and all of them are trained through NASTRAN finite element analysis. The results of optimization study illustrate that the cycles of structural analysis ean be remarkably reduced or even eliminated during the optimization, thus greatly raising the efficiency of optimization process. It also observed that NNRS approximation can achieve equal or even better accuracy than conventional functional response surfaces.
文摘In order to improve turbine internal efficiency and lower manufacturing cost, a new highly loaded rotating blade has been developed. The 3D optimization design method based on artificial neural network and genetic algorithm is adopted to construct the blade shape. The blade is stacked by the center of gravity in radial direction with five sections. For each blade section, independent suction and pressure sides are constructed from the camber line using Bezier curves. Three-dimensional flow analysis is carried out to verify the performance of the new blade. It is found that the new blade has improved the blade performance by 0.5%. Consequently, it is verified that the new blade is effective to improve the turbine internal efficiency and to lower the turbine weight and manufacturing cost by reducing the blade number by about 15%.
基金financially supported by the Program for New Century Excellent Talents in University(Nos.NCET-13-0229,NCET-09-0396)the National Science&Technology Key Projects of Numerical Control(Nos.2012ZX04010-031,2012ZX0412-011)the National High Technology Research and Development Program("863"Program)of China(No.2013031003)
文摘The trial-and-error method is widely used for the current optimization of the steel casting feeding system, which is highly random, subjective and thus ineff icient. In the present work, both the theoretical and the experimental research on the modeling and optimization methods of the process are studied. An approximate alternative model is established based on the Back Propagation(BP) neural network and experimental design. The process parameters of the feeding system are taken as the input, the volumes of shrinkage cavities and porosities calculated by simulation are simultaneously taken as the output. Thus, a mathematical model is established by the BP neural network to combine the input variables with the output response. Then, this model is optimized by the nonlinear optimization function of the genetic algorithm. Finally, a feeding system optimization of a steel traveling wheel is conducted. No shrinkage cavities and porosities are induced through the optimization. Compared to the initial design scheme, the process yield is increased by 4.1% and the volume of the riser is decreased by 5.48×10~6 mm3.
基金Supported by the National Natural Science Foundation of China (21076090)
文摘Two artificial intelligence techniques, artificial neural network and genetic algorithm, were applied to optimize the fermentation medium for improving the nitrite oxidization rate of nitrite oxidizing bacteria. Experiments were conducted with the composition of medium components obtained by genetic algorithm, and the experimental data were used to build a BP (back propagation) neural network model. The concentrations of six medium components were used as input vectors, and the nitrite oxidization rate was used as output vector of the model. The BP neural network model was used as the objective function of genetic algorithm to find the optimum medium composition for the maximum nitrite oxidization rate. The maximum nitrite oxidization rate was 0.952 g 2 NO-2-N·(g MLSS)-1·d-1 , obtained at the genetic algorithm optimized concentration of medium components (g·L-1 ): NaCl 0.58, MgSO 4 ·7H 2 O 0.14, FeSO 4 ·7H 2 O 0.141, KH 2 PO 4 0.8485, NaNO 2 2.52, and NaHCO 3 3.613. Validation experiments suggest that the experimental results are consistent with the best result predicted by the model. A scale-up experiment shows that the nitrite degraded completely after 34 h when cultured in the optimum medium, which is 10 h less than that cultured in the initial medium.
文摘Thermal deformation error is one of the most important factors affecting the CNCs’ accuracy, so research is conducted on the temperature errors affecting CNCs’ machining accuracy;on the basis of analyzing the unpredictability and pre-maturing of the results of the genetic algorithm, as well as the slow speed of the training speed of the particle algorithm, a kind of Mind Evolutionary Algorithm optimized BP neural network featuring extremely strong global search capacity was proposed;type KVC850MA/2 five-axis CNC of Changzheng Lathe Factory was used as the research subject, and the Mind Evolutionary Algorithm optimized BP neural network algorithm was used for the establishment of the compensation model between temperature changes and the CNCs’ thermal deformation errors, as well as the realization method on hardware. The simulation results indicated that this method featured extremely high practical value.
基金Supported by Guide Project of Xinjiang Academy of Agricultural and Reclamation Science(60YYD201308)
文摘[ Objective] The paper aimed to optimize cottonseed meal de-gossypol process by extrusion. [ Method ] The artificial neural network (ANN) was used to stimulate the degradation of free gossypol in cottonseed meal by extrusion process, and a three-layer back propagation neural network was established to predict the degradation of free gossypol. [ Result] The result of 10-fold cross validation showed that the ANN with the training function as traingdx at hidden layer with eight neurons gave the smallest mean square error (MSE). ANN predicted results were very close to the experimental results with correlation coefficient (R2 ) of 0.994 1 and RMSE of 0.497 1. A genetic algorithm (GA) based on the established neural network model was also used for optimizing de-gossypol process. The re- sults of GA showed that the optimal conditions of de-gossypol were puffing temperature 131℃, water ratio 51% , rotational speed 158 r/rain, and feeding speed 136 kg/h, while under this condition the degradation rate of free gossypol was 90.50%, which was close to the predicted result of CA with the small average relative er- ror of 1.38%. [ Conclusion] These results suggested that the GA based on a neural network model might be an excellent tool for optimizing cottonseed meal de-gos- sypol process.
基金Funded by the High Technology Project(863) of the Ministry of Science and Technology of China(No. 2006AA06A305,6,7)
文摘We developed and tested an improved neural network to predict the average concentration of PM10(particulate matter with diameter smaller than 10 ?m) several hours in advance in summer in Beijing.A genetic algorithm optimization procedure for optimizing initial weights and thresholds of the neural network was also evaluated.This research was based upon the PM10 data from seven monitoring sites in Beijing urban region and meteorological observation data,which were recorded every 3 h during summer of 2002.Two neural network models were developed.Model I was built for predicting PM10 concentrations 3 h in advance while Model II for one day in advance.The predictions of both models were found to be consistent with observations.Percent errors in forecasting the numerical value were about 20.This brings us to the conclusion that short-term fluctuations of PM10 concentrations in Beijing urban region in summer are to a large extent driven by meteorological conditions.Moreover,the predicted results of Model II were compared with the ones provided by the Models-3 Community Multiscale Air Quality(CMAQ) modeling system.The mean relative errors of both models were 0.21 and 0.26,respectively.The performance of the neural network model was similar to numerical models,when applied to short-time prediction of PM10 concentration.
文摘The present study is to improve the volume flow rate of an axial fan through optimizing the blade shape under the demand for a specified static pressure. Fourteen design variables were selected to control the blade camber lines and the stacking line and the values of these variables were determined by using the experimental design method of the Latin Hypercube Sampling (LHS) to generate forty designs. The optimization was carried out using the genetic algorithm (GA) coupled with the artificial neural network (ANN) to increase the volume flow rate of the axial fan under the constraint of a specific motor power and a required static pressure. Differences in the aerodynamic performance and the flow characteristics between the original model and the optimal model were analyzed in detail. The results showed that the volume flow rate of the optimal model increased by 33%. The chord length, the installation angle and the cascade turning angle changed considerably. The forward leaned blade was beneficial to improve the volume flow rate of the axial fan. The axial velocity distribution and the static pressure distribution on the blade surface were improved after optimization.
文摘The study on scientific analysis and prediction of China’s future carbon emissions is conducive to balancing the relationship between economic development and carbon emissions in the new era,and actively responding to climate change policy.Through the analysis of the application of the generalized regression neural network(GRNN)in prediction,this paper improved the prediction method of GRNN.Genetic algorithm(GA)was adopted to search the optimal smooth factor as the only factor of GRNN,which was then used for prediction in GRNN.During the prediction of carbon dioxide emissions using the improved method,the increments of data were taken into account.The target values were obtained after the calculation of the predicted results.Finally,compared with the results of GRNN,the improved method realized higher prediction accuracy.It thus offers a new way of predicting total carbon dioxide emissions,and the prediction results can provide macroscopic guidance and decision-making reference for China’s environmental protection and trading of carbon emissions.
文摘It is very important to estimate the basic parameters in helicopter preliminary design. Neural Network (NN) has the advantages in estimating accuracy and generalization over traditional methods. However, there are some difficulties in using NN, e.g., how to select a proper network structure and the number of hidden layers. In this paper, structure and connection weight of a three-layer NN are optimized by genetic algorithm, and the optimized network is applied to helicopter sizing. The proposed method can not only give an optimal NN structure and connection weight, but also reduce the prediction error and has the capability of self-learning when the latest data are available. Furthermore, this method can be easily applied to helicopter design systems.
基金This paper is supported by the Nature Science Foundation of Heilongjiang Province.
文摘This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum.