期刊文献+
共找到23,373篇文章
< 1 2 250 >
每页显示 20 50 100
Analysis of Factors Related to Vasovagal Response in Apheresis Blood Donors and the Establishment of Prediction Model Based on BP Neural Network Algorithm
1
作者 Xin Hu Hua Xu Fengqin Li 《Journal of Clinical and Nursing Research》 2024年第6期276-283,共8页
Objective:To analyze the factors related to vessel vasovagal reaction(VVR)in apheresis donors,establish a mathematical model for predicting the correlation factors and occurrence risk,and use the prediction model to i... Objective:To analyze the factors related to vessel vasovagal reaction(VVR)in apheresis donors,establish a mathematical model for predicting the correlation factors and occurrence risk,and use the prediction model to intervene in high-risk VVR blood donors,improve the blood donation experience,and retain blood donors.Methods:A total of 316 blood donors from the Xi'an Central Blood Bank from June to September 2022 were selected to statistically analyze VVR-related factors.A BP neural network prediction model is established with relevant factors as input and DRVR risk as output.Results:First-time blood donors had a high risk of VVR,female risk was high,and sex difference was significant(P value<0.05).The blood pressure before donation and intergroup differences were also significant(P value<0.05).After training,the established BP neural network model has a minimum RMS error of o.116,a correlation coefficient R=0.75,and a test model accuracy of 66.7%.Conclusion:First-time blood donors,women,and relatively low blood pressure are all high-risk groups for VVR.The BP neural network prediction model established in this paper has certain prediction accuracy and can be used as a means to evaluate the risk degree of clinical blood donors. 展开更多
关键词 Vasovagal response Related factors Prediction bp neural network
下载PDF
基于CSSA-BPNN模型的胶结充填体动态抗压强度预测 被引量:1
2
作者 王小林 梅佳伟 +3 位作者 郭进平 卢才武 王颂 李泽峰 《有色金属工程》 CAS 北大核心 2024年第2期92-101,共10页
充填采矿法二步骤回采时胶结充填体稳定性受爆破扰动而降低。为快速准确地获得充填体动态抗压强度,利用分离式霍普金森压杆(SHPB)进行了40组不同应变率的单轴冲击实验,以灰砂比、充填体密度、养护龄期和平均应变率作为输入参数,充填体... 充填采矿法二步骤回采时胶结充填体稳定性受爆破扰动而降低。为快速准确地获得充填体动态抗压强度,利用分离式霍普金森压杆(SHPB)进行了40组不同应变率的单轴冲击实验,以灰砂比、充填体密度、养护龄期和平均应变率作为输入参数,充填体动态抗压强度作为输出参数,建立了一种基于Logistic混沌麻雀搜索算法(CSSA)优化BP神经网络(BPNN)的预测模型,并与传统BPNN和麻雀搜索算法优化的BPNN进行了对比分析。结果表明:CSSA-BPNN模型的平均相对误差为4.11%,预测值与实测值之间拟合的相关系数均在0.96以上,模型预测精度高。CSSA-BPNN模型的均方根误差为0.395 0 MPa,平均绝对误差为0.359 2 MPa,决定系数为0.995 2,均优于另外两种预测模型。实现了对充填体动态抗压强度的准确预测,可大幅减小物理实验量,为矿山胶结充填体的强度设计提供了一种新方法。 展开更多
关键词 混沌麻雀搜索算法(CSSA) bp神经网络(bpnn) 胶结充填体 分离式霍普金森压杆(SHPB) 动态抗压强度
下载PDF
Study on Remote Sensing of Water Depths Based on BP Artificial Neural Network 被引量:4
3
作者 王艳姣 张培群 +1 位作者 董文杰 张鹰 《Marine Science Bulletin》 CAS 2007年第1期26-35,共10页
A momentum BP neural network model (MBPNNM) was constructed to retrieve the water depth information for the South Channel of the Yangtze River Estuary using the relationship between the reflectance derived from Land... A momentum BP neural network model (MBPNNM) was constructed to retrieve the water depth information for the South Channel of the Yangtze River Estuary using the relationship between the reflectance derived from Landsat 7 satellite data and the water depth information. Results showed that MBPNNM, which exhibited a strong capability of nonlinear mapping, allowed the water depth information in the study area to be retrieved at a relatively high level of accuracy. Affected by the sediment concentration of water in the estuary, MBPNNM enabled the retrieval of water depth of less than 5 meters accurately. However, the accuracy was not ideal for the water depths of more than 10 meters. 展开更多
关键词 Yangtze River Estuary bp neural network water-depth remote sensing retrieval model
下载PDF
COMBINATION OF DISTRIBUTED KALMAN FILTER AND BP NEURAL NETWORK FOR ESG BIAS MODEL IDENTIFICATION 被引量:3
4
作者 张克志 田蔚风 钱峰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2010年第3期226-231,共6页
By combining the distributed Kalman filter (DKF) with the back propagation neural network (BPNN),a novel method is proposed to identify the bias of electrostatic suspended gyroscope (ESG). Firstly,the data sets ... By combining the distributed Kalman filter (DKF) with the back propagation neural network (BPNN),a novel method is proposed to identify the bias of electrostatic suspended gyroscope (ESG). Firstly,the data sets of multi-measurements of the same ESG in different noise environments are "mapped" into a sensor network,and DKF with embedded consensus filters is then used to preprocess the data sets. After transforming the preprocessed results into the trained input and the desired output of neural network,BPNN with the learning rate and the momentum term is further utilized to identify the ESG bias. As demonstrated in the experiment,the proposed approach is effective for the model identification of the ESG bias. 展开更多
关键词 model identification distributed Kalman filter(DKF) back propagation neural network(bpnn) electrostatic suspended gyroscope(ESG)
下载PDF
基于改进麻雀搜索算法优化BPNN的电阻点焊质量预测
5
作者 罗震 董建伟 胡建明 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2024年第5期445-451,共7页
电阻点焊技术由于具有高效、自动化程度高等焊接特点,被广泛应用于汽车、航空航天和公共交通等制造领域,由于焊点在封闭状态下进行,焊接过程存在诸多影响因素且无法直接检测,因此,准确预测电阻点焊质量是生产过程中必不可少的环节.本文... 电阻点焊技术由于具有高效、自动化程度高等焊接特点,被广泛应用于汽车、航空航天和公共交通等制造领域,由于焊点在封闭状态下进行,焊接过程存在诸多影响因素且无法直接检测,因此,准确预测电阻点焊质量是生产过程中必不可少的环节.本文以2219/5A06铝合金为研究对象,在3种不同的装配条件(包括间隙和间距)下进行电阻点焊工艺信号的分析,并进行人工智能建模.为了提高电阻点焊质量评价的性能和效率,本文采用Logistic-Tent(LT)复合映射改进麻雀搜索算法(SSA)对反向传播神经网络(LT-SSA-BPNN)模型进行优化,模型的输入和输出分别为多信号融合后的变量和熔核直径.实验结果表明,与传统的标准反向传播神经网络(BPNN)模型相比,经过LT-SSA-BP模型优化后,预测结果的平均绝对误差(MAE)、均方误差(MSE)和均方根误差(RMSE)分别降低了36.17%、17.55%和51.75%.同时,LT-SSA-BP神经网络在添加了不同间隙和间距条件作为训练集后,其预测稳定性明显提高,可以成功预测电阻点焊质量. 展开更多
关键词 电阻点焊 质量预测 麻雀搜索算法 反向传播神经网络模型
下载PDF
基于改进 PSO-BPNN 的拖拉机液压油品质监测
6
作者 李仲兴 朱方喜 +1 位作者 刘炳晨 郗少华 《中国农机化学报》 北大核心 2024年第10期140-146,共7页
为实现对拖拉机液压油品质的有效监测,保障拖拉机液压系统的平稳运行,基于改进PSO-BPNN设计一种针对拖拉机液压油品质的监测方法。首先,为研究拖拉机液压油品质恶化情况,在液压油新油的基础上配制不同比例的液压油油样。随后,搭建拖拉... 为实现对拖拉机液压油品质的有效监测,保障拖拉机液压系统的平稳运行,基于改进PSO-BPNN设计一种针对拖拉机液压油品质的监测方法。首先,为研究拖拉机液压油品质恶化情况,在液压油新油的基础上配制不同比例的液压油油样。随后,搭建拖拉机液压油品质监测试验装置,并依据试验装置采集与监测液压油粘度、介电常数和温度参数。然后,设计并搭建一种基于改进PSO-BPNN的拖拉机液压油品质监测模型,该模型利用正弦调整惯性权重的PSO算法优化BPNN的权值和阈值初始值,提高模型收敛效率。最后,为验证基于改进PSO-BPNN的液压油品质监测方法的可行性,与基于传统BPNN、标准PSO-BPNN的拖拉机液压油品质监测模型进行对比。结果表明,基于改进PSO-BPNN的拖拉机液压油品质监测方法具有较快的收敛速度,监测正确率达到97.78%,为优化拖拉机液压油品质监测方法提供参考。 展开更多
关键词 拖拉机 液压油品质 改进PSO算法 bp神经网络
下载PDF
基于MIV-PSO-BPNN的掘进面风温预测方法
7
作者 程磊 李正健 +2 位作者 贺智勇 史浩镕 王鑫 《河南理工大学学报(自然科学版)》 CAS 北大核心 2024年第6期11-17,共7页
目的为防治矿井热害,解决矿井掘进面风温预测问题,方法提出一种MIV算法优化的PSO-BPNN预测模型。通过利用MIV算法确定模型的输入变量,以BP网络建模,使用粒子群优化算法结合BP神经网络实现掘进工作面风流温度的预测,得到预测结果并与BPN... 目的为防治矿井热害,解决矿井掘进面风温预测问题,方法提出一种MIV算法优化的PSO-BPNN预测模型。通过利用MIV算法确定模型的输入变量,以BP网络建模,使用粒子群优化算法结合BP神经网络实现掘进工作面风流温度的预测,得到预测结果并与BPNN模型、PSO-BPNN模型、SVR模型相比较。结果结果表明:MIV-PSO-BPNN预测模型的相对误差为-0.47%~1.81%,分别优于PSO-BPNN、BPNN、SVR预测模型的-3.96%~1.93%,-5.54%~2.98%,-2.16%~2.95%,预测模型的误差为-0.1~0.5℃,表明预测值与实测值基本一致;与BPNN预测模型、PSO-BPNN预测模型、SVR预测模型相比,MIV-PSO-BPNN预测模型的预测结果平均绝对误差分别减少65%,54%,50%,均方误差分别减少88%,78%,69%,表明该预测模型的预测效果优于其他3种模型。结论所提模型适用于矿井掘进工作面风温的预测。 展开更多
关键词 bp神经网络 MIV算法 粒子群优化算法 风温预测 算法优化
下载PDF
Study on the Model of Excessive Staminate Catkin Thinning of Proterandrous Walnut Based on Quadratic Polynomial Regression Equation and BP Artificial Neural Network
8
作者 王贤萍 曹贵寿 +4 位作者 杨晓华 张倩茹 李凯 李鸿雁 段泽敏 《Agricultural Science & Technology》 CAS 2015年第6期1295-1300,共6页
The excessive staminate catkin thinning (emasculation) of proterandrous walnut is an important management measure for improving yield. To improve the excessive staminate catkin thinning efficiency, the model of quad... The excessive staminate catkin thinning (emasculation) of proterandrous walnut is an important management measure for improving yield. To improve the excessive staminate catkin thinning efficiency, the model of quadratic polynomial regression equation and BP artificial neural network was developed. The effects of ethephon, gibberel in and mepiquat on shedding rate of staminate catkin of pro-terandrous walnut were investigated by modeling field test. Based on the modeling test results, the excessive staminate catkin thinning model of quadratic polynomial regression equation and BP artificial neural network was established, and it was validated by field test next year. The test data were divided into training set, vali-dation set and test set. The total 20 sets of data obtained from the modeling field test were randomly divided into training set (17) and validation set (3) by central composite design (quadric rotational regression test design), and the data obtained from the next-year field test were divided into the test set. The topological struc-ture of BP artificial neural network was 3-5-1. The results showed that the pre-diction errors of BP neural network for samples from the validation set were 1.355 0%, 0.429 1% and 0.353 8%, respectively; the difference between the predicted value by the BP neural network and validated value by field test was 2.04%, and the difference between the predicted value by the regression equation and validated value by field test was 3.12%; the prediction accuracy of BP neural network was over 1.0% higher than that of regression equation. The effective combination of quadratic polynomial stepwise regression and BP artificial neural network wil not only help to determine the effect of independent parameter but also improve the prediction accuracy. 展开更多
关键词 WALNUT THINNING bp artificial neural network Regression PREDICTION
下载PDF
Quantitative Detection Model of Pernicious Gases in Pig House Based on BP Neural Network
9
作者 俞守华 张洁芳 区晶莹 《Animal Husbandry and Feed Science》 CAS 2009年第3期40-43,48,共5页
To find a neural network model suitable to identify the concentration of mixed pernicious gases in pig house, the quantitative detection model of pernicious gases in pig house was set up based on BP ( Back propagatio... To find a neural network model suitable to identify the concentration of mixed pernicious gases in pig house, the quantitative detection model of pernicious gases in pig house was set up based on BP ( Back propagation) neural network. The BP neural network was trained separately by the three functions, trainbr, traingdm and trainlm, in order to identify the concentration of mixed pernicious gases composed of ammonia gas and hepatic gas. The neural network toolbox in MATLAB software was used to simulate the detection. The results showed that the neural network trained by trainbr function has high average identification accuracy and faster detection speed, and it is also insensitive to noise; therefore, it is suitable to identify the concentration of pemidous gases in pig house. These data provide a reference for intelligent monitoring of pemicious gases in pigsty. 展开更多
关键词 bp neural network pig house -Quantitative detection of gas
下载PDF
Prediction of Injection-Production Ratio with BP Neural Network
10
作者 袁爱武 郑晓松 王东城 《Petroleum Science》 SCIE CAS CSCD 2004年第4期62-65,共4页
Injection of water to enhance oil production is commonplace, and improvements in understanding the process are economically important. This study examines predictive models of the injection-to-production ratio. First... Injection of water to enhance oil production is commonplace, and improvements in understanding the process are economically important. This study examines predictive models of the injection-to-production ratio. Firstly, the error between the fitting and actual injection-production ratio is calculated with such methods as the injection-production ratio and water-oil ratio method, the material balance method, the multiple regression method, the gray theory GM (1,1) model and the back-propogation (BP) neural network method by computer applications in this paper. The relative average errors calculated are respectively 1.67%, 1.08%, 19.2%, 1.38% and 0.88%. Secondly, the reasons for the errors from different prediction methods are analyzed theoretically, indicating that the prediction precision of the BP neural network method is high, and that it has a better self-adaptability, so that it can reflect the internal relationship between the injection-production ratio and the influencing factors. Therefore, the BP neural network method is suitable to the prediction of injection-production ratio. 展开更多
关键词 Injection-production ratio (IPR) bp neural network gray theory PREDICTION
下载PDF
基于BPNN和MOOGA的高速联轴器多目标优化方法 被引量:2
11
作者 王艺琳 王维民 +2 位作者 李维博 王珈乐 张帅 《机电工程》 CAS 北大核心 2024年第2期236-244,共9页
针对高转速、复合工况下膜盘联轴器难以保证其强度特性问题,对已有膜盘联轴器强度及动力学特性进行了研究,提出了一种基于反向传播神经网络(BPNN)和多目标优化遗传算法(MOOGA)的高速联轴器多目标优化方法。首先,为了得到优化所需的关键... 针对高转速、复合工况下膜盘联轴器难以保证其强度特性问题,对已有膜盘联轴器强度及动力学特性进行了研究,提出了一种基于反向传播神经网络(BPNN)和多目标优化遗传算法(MOOGA)的高速联轴器多目标优化方法。首先,为了得到优化所需的关键参数,采用了正交实验结合多因素方差分析的方法,选取了联轴器优化参数;然后,基于已选取的关键参数,采用BPNN方法构建了截面应力和弯曲刚度的目标函数,并将其与多项式拟合方法进行了对比,对BPNN方法的精确性进行了验证;最后,采用MOOGA方法对目标函数进行了多目标优化,并将优化前后结果进行了对比分析。研究结果表明:采用BPNN结合MOOGA的方法对联轴器设计参数进行优化,在满足联轴器刚度需求的情况下,可有效降低联轴器膜盘的危险截面应力;优化后,联轴器危险应力减小了18.2%,弯曲刚度降低了5.05%,联轴器角向补偿能力增加了0.1°,从而证明了仿真的有效性。该结果可以为挠性联轴器参数优化设计提供参考。 展开更多
关键词 膜盘联轴器 机械强度 动力学特性 反向传播神经网络 多目标优化遗传算法 参数优化
下载PDF
Spatial Interpolation of Soil Nutrients Based on BP Neural Network 被引量:3
12
作者 李晴 程家昌 胡月明 《Agricultural Science & Technology》 CAS 2014年第3期506-511,共6页
With Zengcheng City, Guangdong Province, as the object of study, 200 soil sampling points were col ected for the spatial interpolation prediction of soil properties by using Kriging method and BP neural network method... With Zengcheng City, Guangdong Province, as the object of study, 200 soil sampling points were col ected for the spatial interpolation prediction of soil properties by using Kriging method and BP neural network method. After comparing the interpolation results with the measured values, the root mean square error of the prediction data was obtained. The results showed that the interpolation accuracy of BP neural network was higher than that of Kriging method under the same cir-cumstances, and there was no smoothness in using BP neural network method when there were few sample points. In addition, with no requirement on the distri-bution of sample data, BP neural network method had stronger generalization ability than traditional interpolation method, which was an alternative interpolation method. 展开更多
关键词 bp neural network Soil nutrients Spatial prediction KRIGING
下载PDF
基于MFO-BPNN的螺旋钻机钻速预测研究
13
作者 李嘉辉 王英 +3 位作者 郑荣跃 叶军 赵京昊 陈立 《机电工程》 CAS 北大核心 2024年第4期633-642,共10页
针对利用现有经验公式所建立的螺旋钻机钻速预测模型存在准确度不足的问题,提出了一种基于飞蛾扑火算法(MFO)的反向传播神经网络(BPNN)钻速预测模型。首先,对MFO算法的基本原理进行了研究,构建了MFO算法优化BPNN的具体流程;接着,采集了... 针对利用现有经验公式所建立的螺旋钻机钻速预测模型存在准确度不足的问题,提出了一种基于飞蛾扑火算法(MFO)的反向传播神经网络(BPNN)钻速预测模型。首先,对MFO算法的基本原理进行了研究,构建了MFO算法优化BPNN的具体流程;接着,采集了江苏无锡某施工现场钻探数据,并分析了钻速影响因素,运用小波阈值降噪、归一化和灰色关联度分析等系列方法对采集数据进行了预处理,得到了训练和测试集;然后,将MFO算法运用于神经网络的权值和阈值训练,以代替原有梯度下降法,建立了MFO-BPNN钻速预测模型;最后,对上述预测模型与BPNN模型、遗传算法优化反向传播神经网络(GA-BPNN)模型以及粒子群优化算法优化反向传播神经网络(PSO-BPNN)模型的预测结果和评价指标进行了详细的对比分析。研究结果表明:运用MFO-BPNN建立的钻速预测模型,其可靠性达到了91.65%,其决定系数(R 2)优于其他3种预测模型,3项误差指标也是其中最低的,说明该模型的预测精度良好,适合于桩基础工程的实际应用,可为复杂因素影响下的钻速预测提供一种新思路。 展开更多
关键词 螺旋钻机 钻速预测 飞蛾扑火算法 反向传播神经网络 遗传算法优化反向传播神经网络 粒子群优化算法优化反向传播神经网络 决定系数 桩基础工程
下载PDF
基于MCDM-BPNN的城市内涝风险评价及调蓄池选址
14
作者 郝景开 李红艳 +3 位作者 张峰 张翀 毛立波 刘大为 《中国安全科学学报》 CAS CSCD 北大核心 2024年第8期214-221,共8页
为建立一套较为完善的城市内涝风险评价体系,并据此确定调蓄池位置,首先,从积水风险、超载风险和边侧进流量3个维度构建评价指标,设计一种包括改进层次分析法(IAHP)、反熵权法(AEW)和优劣解距离法(TOPSIS)的混合多准则决策框架(MCDM);然... 为建立一套较为完善的城市内涝风险评价体系,并据此确定调蓄池位置,首先,从积水风险、超载风险和边侧进流量3个维度构建评价指标,设计一种包括改进层次分析法(IAHP)、反熵权法(AEW)和优劣解距离法(TOPSIS)的混合多准则决策框架(MCDM);然后,将IAHP-AEW-TOPSIS模型分别与IAHP-TOPSIS、AEW-TOPSIS模型对比,通过斯皮尔曼排序相关系数验证排序一致性,通过计算变异系数、相对极差和灵敏度证实IAHP-AEW-TOPSIS模型的性能;最后,结合反向传播神经网络(BPNN),建立MCDM-BPNN模型,并以山西省某一内涝易发区域为例进行验证。结果表明:积水风险对城市内涝风险评价体系的影响最为显著,所占权重为0.46,其次为超载风险,所占权重为0.36;节点位置与连接管道数量很大程度上对该节点的内涝风险产生影响,在管道汇接处或汇流面积较大处内涝出现更为频繁;IAHP-AEW-TOPSIS模型在样本判别方面具有更好的性能;在5年与10年重现期下,MCDM-BPNN模型验证集准确率分别为93.3%和100%,能够准确快速模拟和预测城市洪水;应用案例设置调蓄池后,高、中、低风险节点数量分别为7、9、30和6、19、21,内涝溢流削减效果显著。 展开更多
关键词 多准则决策框架(MCDM) 反向传播神经网络(bpnn) 城市内涝 风险评价 调蓄池
下载PDF
Trajectory tracking guidance of interceptor via prescribed performance integral sliding mode with neural network disturbance observer 被引量:1
15
作者 Wenxue Chen Yudong Hu +1 位作者 Changsheng Gao Ruoming An 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期412-429,共18页
This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance system... This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots. 展开更多
关键词 bp network neural Integral sliding mode control(ISMC) Missile defense Prescribed performance function(PPF) State observer Tracking guidance system
下载PDF
基于BPNN-SHAP模型的滑坡危险性评价:以伊犁河流域为例
16
作者 戴勇 孟庆凯 +2 位作者 陈世泷 李威 杨立强 《沉积与特提斯地质》 CAS CSCD 北大核心 2024年第3期534-546,共13页
为进一步提高滑坡危险性预测模型精度、增强模型可解释性,本文以新疆伊犁河流域为研究区,选取8个影响滑坡发生的危险性因子,在反向传播神经网络(BPNN)基础上,借鉴博弈论思想,构建一种可解释BP神经网络模型(BPNNSHAP),解决神经网络滑坡... 为进一步提高滑坡危险性预测模型精度、增强模型可解释性,本文以新疆伊犁河流域为研究区,选取8个影响滑坡发生的危险性因子,在反向传播神经网络(BPNN)基础上,借鉴博弈论思想,构建一种可解释BP神经网络模型(BPNNSHAP),解决神经网络滑坡危险性评价的“黑箱”问题。将数据集分为70%训练集和30%测试集,采用5折交叉验证提高模型稳定性,对比深度神经网络(DNN)、随机森林(RF)和逻辑回归(LR)3个模型的评价精度,并探讨BPNNSHAP预测结果的可解释性,完成区域滑坡危险性评价。研究结果表明:相较于其他模型,BPNN-SHAP模型的5个精度评价指标均为最高,分别是:准确率(A)=0.904、精准度(P)=0.911、召回率(R)=0.919、F1分数(F1_(Score))=0.915、曲线下面积(SAUC)=0.901;研究区滑坡极高、高危险区分别占比11.96%、15.53%,其中新源县和巩留县极高、高危险区占比最高,分别为51.1%、45.6%;滑坡主控因子为高程、坡度、降雨量和峰值地面加速度(PGA),定量揭示高程在1500~2000 m、坡度大于14°、年降雨量在260~310 mm、PGA大于0.23 g的区域对滑坡发生起促进作用,表明该区域滑坡可能为高程和坡度主控的降雨型、地震型滑坡。本研究方法可为滑坡危险性评价提供新的技术参考,为伊犁河流域防灾减灾韧性建设提供理论支撑。 展开更多
关键词 滑坡危险性评价 bp神经网络 5折交叉验证 可解释性 伊犁河流域
下载PDF
Mechanical Properties Prediction of the Mechanical Clinching Joints Based on Genetic Algorithm and BP Neural Network 被引量:22
17
作者 LONG Jiangqi LAN Fengchong CHEN Jiqing YU Ping 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第1期36-41,共6页
For optimal design of mechanical clinching steel-aluminum joints, the back propagation (BP) neural network is used to research the mapping relationship between joining technique parameters including sheet thickness,... For optimal design of mechanical clinching steel-aluminum joints, the back propagation (BP) neural network is used to research the mapping relationship between joining technique parameters including sheet thickness, sheet hardness, joint bottom diameter etc., and mechanical properties of shearing and peeling in order to investigate joining technology between various material plates in the steel-aluminum hybrid structure car body. Genetic algorithm (GA) is adopted to optimize the back-propagation neural network connection weights. The training and validating samples are made by the BTM Tog-L-Loc system with different technologic parameters. The training samples' parameters and the corresponding joints' mechanical properties are supplied to the artificial neural network (ANN) for training. The validating samples' experimental data is used for checking up the prediction outputs. The calculation results show that GA can improve the model's prediction precision and generalization ability of BP neural network. The comparative analysis between the experimental data and the prediction outputs shows that ANN prediction models after training can effectively predict the mechanical properties of mechanical clinching joints and prove the feasibility and reliability of the intelligent neural networks system when used in the mechanical properties prediction of mechanical clinching joints. The prediction results can be used for a reference in the design of mechanical clinching steel-aluminum joints. 展开更多
关键词 genetic algorithm bp neural network mechanical clinching JOINT properties prediction
下载PDF
Multi-Objective Optimization and Analysis Model of Sintering Process Based on BP Neural Network 被引量:18
18
作者 ZHANG Jun-hong XIE An-guo SHEN Feng-man 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2007年第2期1-5,共5页
A multi-objective optimization and analysis model of the sintering process based on BP neural network is presented. Genetic algorithms are combined to simplify the BP neural network, which can reduce the learning time... A multi-objective optimization and analysis model of the sintering process based on BP neural network is presented. Genetic algorithms are combined to simplify the BP neural network, which can reduce the learning time and increase the forecasting accuracy of the network model. This model has been experimented in the sintering process, and the production cost, the energy consumption, the quality (revolving intensity), and the output are considered at the same time. Moreover, the relation between some factors and the multi-objectives has been analyzed, and the results are consistent with the process. Different objectives are emphasized at different practical periods, and this can provide a theoretical basis for the manager. 展开更多
关键词 bp neural network MULTI-OBJECTIVE OPTIMIZATION SINTER
下载PDF
STUDY ON INJECTION AND IGNITION CONTROL OF GASOLINE ENGINE BASED ON BP NEURAL NETWORK 被引量:13
19
作者 Zhang Cuiping Yang QingfoCollege of Mechanical Engineering,Taiyuan University of Technology,Taiyuan 030024, China 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2003年第4期441-444,共4页
According to advantages of neural network and characteristics of operatingprocedures of engine, a new strategy is represented on the control of fuel injection and ignitiontiming of gasoline engine based on improved BP... According to advantages of neural network and characteristics of operatingprocedures of engine, a new strategy is represented on the control of fuel injection and ignitiontiming of gasoline engine based on improved BP network algorithm. The optimum ignition advance angleand fuel injection pulse band of engine under different speed and load are tested for the samplestraining network, focusing on the study of the design method and procedure of BP neural network inengine injection and ignition control. The results show that artificial neural network technique canmeet the requirement of engine injection and ignition control. The method is feasible for improvingpower performance, economy and emission performances of gasoline engine. 展开更多
关键词 neural network bp algorithm Gasoline engine CONTROL
下载PDF
Real estate appraisal system based on GIS and BP neural network 被引量:12
20
作者 LIU Xiao-sheng1, DENG Zhe1, WANG Ting-li2 1. School of Architecture and Survey Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China 2. School of Applied Science, Jiangxi University of Science and Technology, Ganzhou 341000, China 《中国有色金属学会会刊:英文版》 CSCD 2011年第S3期626-630,共5页
For the inefficiency and inaccuracy of appraisal method of traditional estate appraisal theory, the real estate appraisal system based on GIS and BP neural network was established. The structure of the system was desi... For the inefficiency and inaccuracy of appraisal method of traditional estate appraisal theory, the real estate appraisal system based on GIS and BP neural network was established. The structure of the system was designed which includes appraisal model, trade case, GIS database and query analysis module. With the help of the L-M algorithm in MATLAB software, BP neural network was improved and the trade cases were trained, then the BP neural network which has already been trained was tested. At the same time, the BP neural and GIS were put together to construct the hedonic price estimate model. The C# and ArcGIS9.3 were used to achieve the system in VS2008. City basic geographic data and real estate related information were used as the basic data in practice. The results show that the functions of querying, adding and editing the spatial data and attribute data are achieved and also the efficiency and accuracy of real estate are improved, so that the new method of real estate is provided by the system. 展开更多
关键词 bp neural network GIS HEDONIC PRICE real ESTATE APPRAISAL
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部